
Exam 2 Review 
18.05 Spring 2014 

Jeremy Orloff and Jonathan Bloom 

Cannot cover everything. 

Jerry will go through a list of examples. 

Jon, Peter, Ruthi, Erika will take questions. 



Summary
 

Data: x1, . . . , xn 

Basic statistics: sample mean, sample variance, sample median 

Likelihood, maximum likelihood estimate (MLE) 

Bayesian updating: prior, likelihood, posterior, predictive
 
probability, probability intervals; prior and likelihood can be
 
discrete or continuous
 

NHST: H0, HA, significance level, rejection region, power, type 1 
and type 2 errors, p-values. 
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Basic statistics
 

Data: x1, . . . , xn. 

x1 + . . . + xn
sample mean = x̄ = 

n  n (xi − x̄)2 
2 i=1sample variance = s =

n − 1 

sample median = middle value 

Example. Data: 1, 2, 3, 6, 8. 
2 9+4+1+4+16 x̄ = 4, s = 

4 = 8.5, median = 3. 
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Likelihood
 

x = data 

θ = parameter of interest or hypotheses of interest 

Likelihood: 

p(x | θ) (discrete distribution) 

f (x | θ) (continuous distribution) 

Log likelihood : 

ln(p(x | θ)). 
ln(f (x | θ)). 
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Likelihood examples
 

Examples. Find the likelihood function of each of the following. 

1. Coin with probability of heads θ. Toss 10 times get 3 heads. 

2. Wait time follows exp(λ). In 5 trials wait 3,5,4,5,2 

3. Usual 5 dice. Two rolls, 9, 5. (Likelihood given in a table) 

4. x1, . . . , xn ∼ N(µ, σ2) 

5. x = 6 drawn from uniform(0, θ) 

6. x ∼ uniform(0, θ) 
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MLE
 

Methods for finding the maximum likelihood estimate (MLE). 

Discrete hypotheses: compute each likelihood 

Discrete hypotheses: maximum is obvious 

Continuous parameter: compute derivative (often use log 
likelihood) 

Continuous parameter: maximum is obvious 

Examples. Find the MLE for each of the examples in the previous 
slide. 
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Bayesian updating: discrete prior-discrete likelihood
 

Jon has 1 four-side, 2 six-sided, 2 eight-sided, 2 twelve sided, and 1 
twenty-sided dice. He picks one at random and rolls a 7. 

1 

2 

3 

4 

For each type of die, find the posterior probability Jon chose that
 
type.
 

What are the posterior odds Jon chose the 20-sided die?
 

Compute the prior predictive probability of rolling a 7 on roll 1.
 

Compute the posterior predictive probability of rolling a 8 on roll
 
2. 
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Bayesian updating: conjugate priors 

1. Beta prior, binomial likelihood 

Data: x ∼ binomial(n, θ). θ is unknown. 

Prior: f (θ) ∼ beta(a, b)
 

Posterior: f (θ | x) ∼ beta(a + x , b + n − x)
 

Example. Suppose x ∼ binomial(30, θ), x = 12.
 
If we have a prior f (θ) ∼ beta(1, 1) find the posterior. 

2. Beta prior, geometric likelihood 

Data: x
 
Prior: f (θ) ∼ beta(a, b)
 
Posterior: f (θ | x) ∼ beta(a + x , b + 1).
 

Example. Suppose x ∼ geometric(θ), x = 6.
 
If we have a prior f (θ) ∼ beta(4, 2) find the posterior.
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Normal-normal
 

3. Normal prior, normal likelihood: 

1 n 
a = b = 

σ2 σ2 
prior 

aµprior + bx̄ 1 
σ2 µpost = , post = . 

a + b a + b 

Example. In the population IQ is normally distributed: 
θ ∼ N(100, 152). 

An IQ test finds a person’s ‘true’ IQ + random error ∼ N(0, 102). 

Someone takes the test and scores 120. 

Find the posterior pdf for this person’s IQ: 
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Bayesian updating: continuous prior-continuous likelihood
 

Examples. Update from prior to posterior for each of the following 
with the given data. Graph the prior and posterior in each case. 

1. Romeo is late: 
likelihood: x ∼ U(0, θ), prior: U(0, 1). 

data: 0.3, 0.4. 0.4 

2. Waiting times: 
likelihood: x ∼ exp(λ), prior: λ ∼ exp(2). 

data: 1, 2 

3. Waiting times: 
likelihood: x ∼ exp(λ), prior: λ ∼ exp(2). 

data: x1, x2, . . . , xn 
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NHST: Steps
 

1 

2 

3 

4 

5 

6 

7 

Specify H0 and HA.
 

Choose a significance level α.
 

Choose a test statistic and determine the null distribution.
 

Determine how to compute a p-value and/or the rejection region.
 

Collect data. 

Compute p-value or check if test statistic is in the rejection
 
region.
 

Reject or fail to reject H0.
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NHST: probability tables 

Show tables if needed. 
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NHST: One-sample t-test
 

Data: we assume normal data with both µ and σ unknown: 

x1, x2, . . . , xn ∼ N(µ, σ2). 

Null hypothesis: µ = µ0 for some specific value µ0. 

Test statistic: 
x − µ0 

t = √ 
s/ n 

where 
nn

2 1 
s = (xi − x)2 . 

n − 1 
i=1 

Null distribution: t(n − 1) 
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Example: z and one-sample t-test 

For both problems use significance level α = .05. 

Assume the data 2, 4, 4, 10 is drawn from a N(µ, σ2). 

Take H0: µ = 0; HA: µ = 0.  

1. Assume σ2 = 16 is known and test H0 against HA. 

2. Now assume σ2 is unknown and test H0 against HA. 
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Two-sample t-test: equal variances
 

Data: we assume normal data with µx , µy and (same) σ unknown: 

x1, . . . , xn ∼ N(µx , σ
2), y1, . . . , ym ∼ N(µy , σ

2) 

Null hypothesis H0: µx = µy . 
2 2   

(n − 1)s + (m − 1)s
2 x y 1 1 

Pooled variance: s = + .p n + m − 2 n m

x̄ − ȳ
Test statistic: t = 

sp 

Null distribution: f (t | H0) is the pdf of T ∼ t(n + m − 2) 
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Example: two-sample t-test
 

We have data from 1408 women admitted to a maternity hospital for 
(i) medical reasons or through (ii) unbooked emergency admission. 
The duration of pregnancy is measured in complete weeks from the 
beginning of the last menstrual period. 

(i) Medical: 775 obs. with x̄ = 39.08 and s2 = 7.77. 

(ii) Emergency: 633 obs. with x̄ = 39.60 and s2 = 4.95 

1. Set up and run a two-sample t-test to investigate whether the 
duration differs for the two groups. 

2. What assumptions did you make? 
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Chi-square test for goodness of fit 

Three treatments for a disease are compared in a clinical trial, 
yielding the following data: 

Treatment 1 Treatment 2 Treatment 3 
Cured 50 30 12 
Not cured 100 80 18 

Use a chi-square test to compare the cure rates for the three 
treatments 
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F -test = one-way ANOVA 
Like t-test but for n groups of data with m data points each. 

yi ,j ∼ N(µi , σ
2), yi ,j = j th point in ith group 

Assumptions: data for each group is an independent normal sample 
with (possibly) different means but the same variance. 

Null-hypothesis is that means are all equal: µ1 = · · · = µn 
MSBTest statistic is where:
MSW nm 

MSB = between group variance = (ȳi − ȳ)2 

n − 1 
MSW = within group variance = sample mean of s1

2 , . . . , sn 
2 

Idea: If µi are equal, this ratio should be near 1. 

Null distribution is F-statistic with n − 1 and n(m − 1) d.o.f.: 

MSB ∼ Fn−1, n(m−1)
MSW 
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ANOVA example
 

The table shows recovery time in days for three medical treatments. 

1. Set up and run an F-test. 

2. Based on the test, what might you conclude about the treatments? 

T1 T2 T3 

6 8 13 
8 12 9 
4 9 11 
5 11 8 
3 6 7 
4 8 12 

For α = .05, the critical value of F2,15 is 3.68. 
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NHST: some key points
 

1. α is not the probability of being wrong overall. It’s the probability 
of being wrong if the null hypothesis is true. 

2. Likewise, power is not a probability of being right. It’s the 
probability of being write if a particular alternate hypothesis is true. 
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