Null Hypothesis Significance Testing Significance Level, Power, t-Tests

18.05 Spring 2014
Jeremy Orloff and Jonathan Bloom

Simple and composite hypotheses

Simple hypothesis: the sampling distribution is fully specified. Usually the parameter of interest has a specific value.

Composite hypotheses: the sampling distribution is not fully specified. Usually the parameter of interest has a range of values.

Example. A coin has probability θ of heads. Toss it 30 times and let x be the number of heads.

- (i) $H: \theta = .4$ is simple. $x \sim \text{binomial}(30, .4)$.
- (ii) $H: \theta > .4$ is composite. $x \sim \text{binomial}(30, \theta)$ depends on which value of θ is chosen.

Extreme data and p-values

Area in red = $P(\text{rejection region} \mid H_0) = \alpha$.

Statistic x inside rej. region $\Leftrightarrow p < \alpha \Leftrightarrow$ reject H_0

Statistic x outside rej. region $\Leftrightarrow p > \alpha \Leftrightarrow$ do not reject H_0

Two-sided *p*-values

 $p > \alpha$: do not reject H_0

Critical values:

- The boundary of the rejection region are called critical values.
- Critical values are labeled by the probability to their right.
- They are complementary to quantiles: $c_{.1} = q_{.9}$
- Example: for a standard normal $c_{.025} = 2$ and $c_{.975} = -2$.

Error, significance level and power

		True state of nature				
		H_0	H_A			
Our	Reject H ₀	Type I error	correct decision			
decision	'Accept' H ₀	correct decision	Type II error			

```
Significance level = P(\text{type I error})

= \text{probability we incorrectly reject } H_0

= P(\text{test statistic in rejection region } | H_0)
```

```
Power = probability we correctly reject H_0
= P(\text{test statistic in rejection region} | H_A)
= 1 - P(\text{type II error})
```

****Want significance level near 0 and power near 1.****

Board question: significance level and power

The rejection region is boxed in red. The corresponding probabilities for different hypotheses are shaded below it.

x	0	1	2	3	4	5	6	7	8	9	10
$H_0: p(x \theta = .5)$.001	.010	.044	.117	.205	.246	.205	.117	.044	.010	.001
$H_A: p(x \theta = .6)$.000	.002	.011	.042	.111	.201	.251	.215	.121	.040	.006
$H_A: p(x \theta=.7)$.000	.0001	.001	.009	.037	.103	.200	.267	.233	.121	.028

- 1. Find the significance level of the test.
- **2.** Find the power of the test for each of the two alternative hypotheses.

Concept question

1. Which test has higher power?

June 1, 2014 7 / 15

Concept question

2. The power of the test in the graph is given by the area of

(a)
$$R_1$$
 (b) R_2 (c) $R_1 + R_2$ (d) $R_1 + R_2 + R_3$

June 1, 2014 8 / 15

Discussion question

The null distribution for test statistic x is $N(4, 8^2)$. The rejection region is $\{x \ge 20\}$.

What is the significance level and power of this test?

One-sample *t*-test

 \bullet Data: we assume normal data with both μ and σ unknown:

$$x_1, x_2, \ldots, x_n \sim N(\mu, \sigma^2).$$

- Null hypothesis: $\mu = \mu_0$ for some specific value μ_0 .
- Test statistic:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

where

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2.$$

Here t is the Studentized mean and s^2 is the sample variance.

- Null distribution: $f(t \mid H_0)$ is the pdf of $T \sim t(n-1)$, the t distribution with n-1 degrees of freedom.
- Two-sided *p*-value: p = P(|T| > |t|).
- R command: pt(x,n-1) is the cdf of t(n-1).
- http://ocw.mit.edu/ans7870/18/18.05/s14/applets/t-jmo.html

Board question: z and one-sample t-test

For both problems use significance level $\alpha = .05$.

Assume the data 2, 4, 4, 10 is drawn from a $N(\mu, \sigma^2)$.

Take
$$H_0$$
: $\mu = 0$; H_A : $\mu \neq 0$.

- **1.** Assume $\sigma^2 = 16$ is known and test H_0 against H_A .
- **2.** Now assume σ^2 is unknown and test H_0 against H_A .

Two-sample *t*-test: equal variances

Data: we assume normal data with μ_x, μ_y and (same) σ unknown:

$$x_1, \ldots, x_n \sim N(\mu_x, \sigma^2), \quad y_1, \ldots, y_m \sim N(\mu_y, \sigma^2)$$

Null hypothesis H_0 : $\mu_x = \mu_y$.

Pooled variance:
$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right).$$

Test statistic:
$$t = \frac{\bar{x} - \bar{y}}{s_p}$$

Null distribution: $f(t \mid H_0)$ is the pdf of $T \sim t(n+m-2)$

In general (so we can compute power) we have

$$rac{(ar{x}-ar{y})-(\mu_{x}-\mu_{y})}{s_{n}}\sim t(n+m-2)$$

Note: there are more general formulas for unequal variances.

Board question: two-sample *t*-test

Real data from 1408 women admitted to a maternity hospital for (i) medical reasons or through (ii) unbooked emergency admission. The duration of pregnancy is measured in complete weeks from the beginning of the last menstrual period.

Medical: 775 obs. with $\bar{x} = 39.08$ and $s^2 = 7.77$.

Emergency: 633 obs. with $\bar{x} = 39.60$ and $s^2 = 4.95$

- 1. Set up and run a two-sample t-test to investigate whether the duration differs for the two groups.
- 2. What assumptions did you make?

Table question

Jerry desperately wants to cure diseases but he is terrible at designing effective treatments. He is however a careful scientist and statistician, so he randomly divides his patients into control and treatment groups. The control group gets a placebo and the treatment group gets the experimental treatment. His null hypothesis H_0 is that the treatment is no better than the placebo. He uses a significance level of $\alpha=0.05$. If his p-value is less than α he publishes a paper claiming the treatment is significantly better than a placebo.

Since his treatments are never, in fact, effective what percentage of his experiments result in published papers?

What percentage of his published papers describe treatments that are better than placebo?

Table question

Jon is a genius at designing treatments, so all of his proposed treatments are effective. He's also a careful scientist and statistician so he too runs double-blind, placebo controlled, randomized studies. His null hypothesis is always that the new treatment is no better than the placebo. He also uses a significance level of $\alpha=0.05$ and publishes a paper if $p<\alpha$.

How could you determine what percentage of his experiments result in publications?

What percentage of his published papers describe effective treatments?

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.