Choosing Priors Probability Intervals

18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom

Concept question

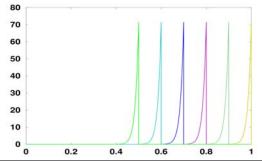
Say we have a bent coin with unknown probability of heads θ .

We are convinced that $\theta \leq .7$.

Our prior is uniform on [0,.7] and 0 from .7 to 1.

We flip the coin 65 times and get 60 heads.

Which of the graphs below is the posterior pdf for θ ?



1. green

2. light blue

3. blue

- 4. magenta
- **5**. light green
- **6**. yellow

Two parameter tables: Malaria

In the 1950's scientists injected 30 African "volunteers" with malaria.

S = carrier of sickle-cell gene

N = non-carrier of sickle-cell gene

D+= developed malaria

D-= did not develop malaria

	D+	D-	
S	2	13	15
N	14	1	15
	16	14	30

Model

 θ_S = probability an injected S develops malaria.

 θ_N = probability an injected N develops malaria.

Assume conditional independence between all the experimental subjects.

Likelihood is a function of both θ_S and θ_N :

$$P(\mathsf{data}|\theta_S,\theta_N) = c\,\theta_S^2(1-\theta_S)^{13}\theta_N^{14}(1-\theta_N).$$

Hypotheses: pairs (θ_S, θ_N) .

Finite number of hypotheses. θ_S and θ_N are each one of 0, .2, .4, .6, .8, 1.

Hypotheses

$\theta_N \backslash \theta_S$	0	.2	.4	.6	.8	1
1	(0,1)	(.2,1)	(.4,1)	(.6,1)	(.8,1)	(1,1)
.8	(0,.8)	(.2,.8)	(.4,.8)	(.6, .8)	(.8,.8)	(1,.8)
.6	(0,.6)	(.2,.6)	(.4,.6)	(.6,.6)	(.8,.6)	(1,.6)
.4	(0,.4)	(.2,.4)	(.4,.4)	(.6,.4)	(.8,.4)	(1,.4)
.2	(0,.2)	(.2,.2)	(.4,.2)	(.6,.2)	(.8,.2)	(1,.2)
0	(0,0)	(.2,0)	(.4,0)	(.6,0)	(.8,0)	(1,0)

Table of hypotheses for (θ_S, θ_N)

Corresponding level of protection due to S: red = strong, pink = some, orange = none, white = negative.

Likelihoods (scaled to make the table readable)

$\theta_N \backslash \theta_S$	0	.2	.4	.6	.8	1
1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
.8	0.00000	1.93428	0.18381	0.00213	0.00000	0.00000
.6	0.00000	0.06893	0.00655	0.00008	0.00000	0.00000
.4	0.00000	0.00035	0.00003	0.00000	0.00000	0.00000
.2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Likelihoods scaled by 100000/c

$$P(\mathsf{data}|\theta_S,\theta_N) = c\,\theta_S^2(1-\theta_S)^{13}\theta_N^{14}(1-\theta_N).$$

June 1, 2014 6 / 28

Flat prior

$\theta_N \backslash \theta_S$	0	.2	.4	.6	.8	1	$p(\theta_N)$
1	1/36	1/36	1/36	1/36	1/36	1/36	1/6
.8	1/36	1/36	1/36	1/36	1/36	1/36	1/6
.6	1/36	1/36	1/36	1/36	1/36	1/36	1/6
.4	1/36	1/36	1/36	1/36	1/36	1/36	1/6
.2	1/36	1/36	1/36	1/36	1/36	1/36	1/6
0	1/36	1/36	1/36	1/36	1/36	1/36	1/6
$p(\theta_S)$	1/6	1/6	1/6	1/6	1/6	1/6	1

Flat prior: each hypothesis (square) has equal probability

Posterior to the flat prior

$\theta_N \backslash \theta_S$	0	.2	.4	.6	.8	1	$p(\theta_N \mathrm{data})$
1	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
.8	0.00000	0.88075	0.08370	0.00097	0.00000	0.00000	0.96542
.6	0.00000	0.03139	0.00298	0.00003	0.00000	0.00000	0.03440
.4	0.00000	0.00016	0.00002	0.00000	0.00000	0.00000	0.00018
.2	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000

 $p(\theta_S|\text{data})$ 0.00000 0.91230 0.08670 0.00100 0.00000 0.00000

Normalized posterior to the flat prior

Strong protection:

$$P(\theta_N - \theta_S > .5 \,|\, \text{data}) = \text{sum of red} = .88075$$

Some protection:

 $P(\theta_N > \theta_S \mid \text{data}) = \text{sum of pink and red} = .99995$

1.00000

Treating severe respiratory failure*

*Adapted from *Statistics a Bayesian Perspective* by Donald Berry

Two treatments for newborns with severe respiratory failure.

- 1. CVT: conventional therapy (hyperventilation and drugs)
- 2. ECMO: extracorporeal membrane oxygenation (invasive procedure)

In 1983 in Michigan:

19/19 ECMO babies survived and 0/3 CVT babies survived.

Later Harvard ran a randomized study:

28/29 ECMO babies survived and 6/10 CVT babies survived.

Board question: updating two parameter priors

Michigan: 19/19 ECMO babies and 0/3 CVT babies survived.

Harvard: 28/29 ECMO babies and 6/10 CVT babies survived.

 θ_E = probability that an ECMO baby survives θ_C = probability that a CVT baby survives

Consider the values .125, .375, .625, .875 for θ_E and θ_S

- 1. Make the 4×4 prior table for a flat prior.
- **2**. Based on the Michigan results, create a reasonable informed prior table for analyzing the Harvard results (unnormalized is fine).
- **3.** Make the likelihood table for the Harvard results.
- **4.** Find the posterior table for the informed prior.
- **5.** Using the informed posterior, compute the probability that ECMO is better than CVT.
- **6.** Also compute the posterior probability that $\theta_E \theta_C \ge .6$. (The posted solutions will also show 4-6 for the flat prior.)

Continuous two-parameter distributions

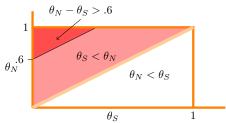
Sometimes continuous parameters are more natural.

Malaria example (from class notes):

discrete prior table from the class notes.

Similarly colored version for the continuous parameters (θ_S, θ_N) over range $[0, 1] \times [0, 1]$.

$\theta_N \backslash \theta_S$	0	.2	.4	.6	.8	1
1	(0,1)	(.2,1)	(.4,1)	(.6,1)	(.8,1)	(1,1)
.8	(0,.8)	(.2,.8)	(.4,.8)	(.6, .8)	(.8,.8)	(1,.8)
.6	(0,.6)	(.2,.6)	(.4,.6)	(.6,.6)	(.8,.6)	(1,.6)
.4	(0,.4)	(.2,.4)	(.4,.4)	(.6,.4)	(.8,.4)	(1,.4)
.2	(0,.2)	(.2,.2)	(.4,.2)	(.6,.2)	(.8,.2)	(1,.2)
0	(0,0)	(.2,0)	(.4,0)	(.6,0)	(.8,0)	(1,0)



Then probabilities are given by double integrals over regions.

Probability intervals

- **Example.** If $P(a \le \theta \le b) = .7$ then [a, b] is a .7 probability interval for θ . We also call it a 70% probability interval.
- **Example.** Between the .05 and .55 quantiles is a .5 probability interval. Another 50% probability interval goes from the .25 to the .75 quantiles.
- **Symmetric probability intevals.** A symmetric 90% probability interval goes from the .05 to the .95 quantile.
- **Q-notation.** Writing q_p for the p quantile we have .5 probability intervals $[q_{.25}, q_{.75}]$ and $[q_{.05}, q_{.55}]$.
- **Uses.** To summarize a distribution; To help build a subjective prior.

Probability intervals in Bayesian updating

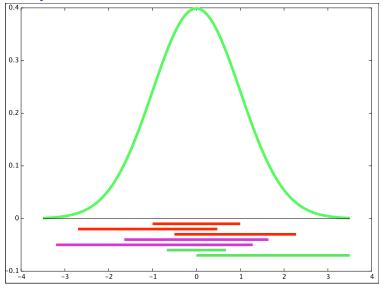
We have p-probability intervals for the prior $f(\theta)$.

We have p-probability intervals for the posterior $f(\theta|x)$.

The latter tends to be smaller than the former. Thanks data!

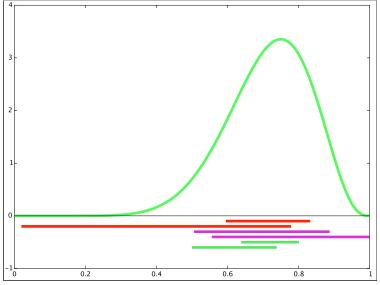
Probability intervals are good, concise statements about our current belief/understanding of the parameter of interest.

Probability intervals for normal distributions



Red = .68, magenta = .9, green=.5

Probability intervals for beta distributions



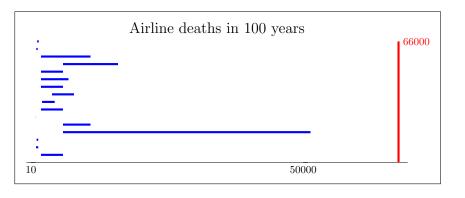
Red = .68, magenta = .9, green=.5

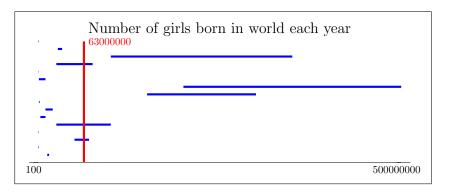
Concept question

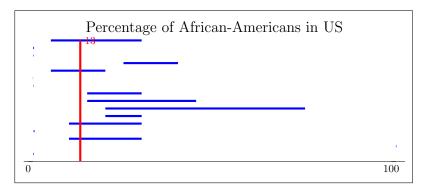
To convert an 80% probability interval to a 90% interval should you shrink it or stretch it?

1. Shrink

2. Stretch.

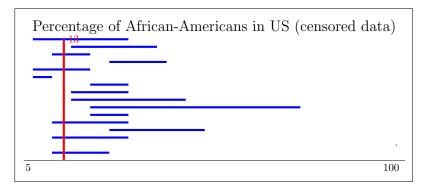




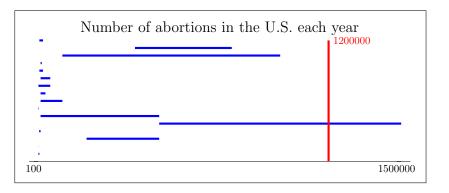


Subjective probability 3 censored

Censored by changing numbers less than 1 to percentages and ignoring numbers bigger that 100.







Meteor!

On March 22, 2013, a meteor lit up the skies. It passed almost directly over NYC.

Image of meteor striking the earth removed due to copyright restrictions.

Board question: Meteor! No data.

Map of the northeastern United States removed due to copyright restrictions.

Draw a pdf $f(\theta)$ for the meteor's direction.

Draw a .5-probability interval. How long is it?

Board question: Meteor! Heat map.

Image removed due to copyright restrictions. Refer to: http://amsmeteors.org/2013/03/update-for-march-22-2013-northeast-fireball/.

Draw a pdf $f(\theta|x_1)$ for the meteor's direction. Draw a .5-probability interval. How long is it?

Broad question: Meteor! Finer heat map.

Image removed due to copyright restrictions. Refer to: http://amsmeteors.org/2013/03/update-for-march-22-2013-northeast-fireball/.

Draw a pdf $f(\theta|x_2)$ for the meteor's direction.

Draw a .5-probability interval. How long is it?

Discussion: Meteor! Actual direction.

Image removed due to copyright restrictions. Refer to: http://amsmeteors.org/2013/03/update-for-march-22-2013-northeast-fireball/.

Discussion: how good is the data of the heat map for determining the direction of the meteor?

Discussion: Meteor! Better data.

Image removed due to copyright restrictions. Refer to: http://amsmeteors.org/fireball_event/2013/667.

Here's the actual data they used to calculate the direction: 1236 reports of location and orientation

```
http://amsmeteors.org/2013/03/
update-for-march-22-2013-northeast-fireball/
```

28 / 28

MIT OpenCourseWare http://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.