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Problem 6a on pset 5
 

Mrs S is found stabbed in her family garden. 

Mr S behaves strangely after her death and is considered as a 
suspect. 

Investigation shows that Mr S had beaten up his wife on at least 
nine previous occasions. 

The prosecution advances this data as evidence in favor of the 
hypothesis that Mr S is guilty of the murder. 

Mr S’s highly paid lawyer say, ‘statistically, only one in a 
thousand wife-beaters actually goes on to murder his wife. So 
the wife-beating is not strong evidence at all. In fact, given the 
wife beating evidence alone, it’s extremely unlikely that he would 
be the murderer of his wife – only a 1/1000 chance. You should 
therefore find him innocent.’ 

What do you think of the lawyers argument? 
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Problem 6b on pset 5
 

In 1999 in Great Britain, Sally Clark was convicted of murdering her 
two sons after each child died weeks after birth (the first in 1996, the 
second in 1998). Her conviction was largely based on the testimony of 
the pediatrician Professor Sir Roy Meadow. He claimed that, for an 
affluent non-smoking family like the Clarks, the probability of a single 
cot death (SIDS) was 1 in 8543, so the probability of two cot deaths 
in the same family was around “1 in 73 million.” Given that there are 
around 700,000 live births in Britain each year, Meadow argued that a 
double cot death would be expected to occur once every hundred 
years. Finally, he reasoned that given this vanishingly small rate, the 
far more likely scenario is that Sally Clark murdered her children. 
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Continuous range of hypotheses
 

Example. Bernoulli with unknown probability of success p.
 
Can hypothesize that p takes any value in [0, 1].
 
Model: ‘bent coin’ with probability p of heads.
 

Example. Waiting time X ∼ exp(λ) with unknown λ.
 
Can hypothesize any λ > 0.
 

Example. Have normal random variable with unknown µ and σ. Can
 
hypothesisze (µ, σ) anywhere in (−∞, ∞) × [0, ∞).
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Review of pdf and probability 

X random variable with pdf f (x). 
f (x) is a density, units: probability/units of x . 

x

f(x)

c d

P (c ≤ X ≤ d)

x

f(x)

x
dx

probability f(x)dx

 d 

P(c ≤ X ≤ d) = f (x) dx . 
c 

Probability X is in an infitesimal range dx around x is 

f (x) dx 

Often use probability f (x) dx instead of density f (x)
 

May 29, 2014 5 / 14 



Notational clarity for continuous parameters
 

Example. Suppose that X ∼ Bernoulli(θ), where θ is an unknown 
parameter. We can hypothesize that θ takes any value in [0, 1]. 

We use θ instead of p because it’s neutral with no confusing 
connotations. 

Since θ is continuous we need a prior pdf f (θ). 

Use f (θ) dθ to work with probabilities instead of densities, e.g. 

The prior probability that θ is in the range .5 ± d
2 
θ is f (.5) dθ. 

To avoid cumbersome language we will say
 

‘The hypothesis θ ± d
2 
θ has prior probability f (θ) dθ.’
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Concept question 
Suppose X ∼ Bernoulli(θ) where the value of θ is unknown. If we use 
Bayesian methods to make probabilistic statements about θ then 
which of the following is true? 

1. The random variable is discrete, the space of hypotheses is 
discrete. 

2. The random variable is discrete, the space of hypotheses is 
continuous. 

3. The random variable is continuous, the space of hypotheses is 
discrete. 

4. The random variable is continuous, the space of hypotheses is 
continuous. 

answer: 2. A Bernoulli random variable takes values 0 or 1. So X is 
discrete. The parameter θ can be anywhere in the continuous range [0,1]. 
Therefore the space of hypotheses is continuous. 
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Bayesian update tables: discrete priors 
Discrete hypotheses: A, B , C .
 

Data: D.
 

Prior probability function: P(A), P(B), P(C ).
 

hypothesis prior likelihood 
unnormalized 
posterior posterior 

A P(A) P(D|A) P(D|A)P(A) P(D|A)P(A) 
P(D) 

B P(B) P(D|B) P(D|B)P(B) P(D|B)P(B) 
P(D) 

C P(C ) P(D|C ) P(D|C )P(C ) 
P(D|C )P(C ) 

P(D) 
Total 1 P(D) = sum 1 

Note T = P(D) = the prior predictive probability of D. 
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Bayesian update tables: continuous priors
 

X ∼ Bernoulli(θ). Unknown θ
 

Continuous hypotheses θ in [0,1].
 
Data x .
 
Prior pdf f (θ).
 
Likelihood p(x |θ).
 

Note T = p(x), the prior predictive probability of x .
 

hypoth. prior likel. un. posterior posterior

Total 1 T =

∫ 1

0

p(x|θ)f(θ) dθ 1

θ ± dθ
2
f(θ) dθ p(x|θ) p(x|θ)f(θ) dθ p(x|θ)f(θ) dθ

T

; 
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Example
 

‘Bent’ coin: unknown probability θ of heads.
 

Flat prior: f (θ) = 1 on [0, 1].
 

Data: toss once and get heads.
 

hypoth. prior likelihood 
unnormalized 
posterior posterior 

θ ± dθ 
2 dθ θ θ dθ 2θ dθ 

Total 1 
f 1 
0 θ dθ = 1/2 1 

Posterior pdf = f (θ|x) = 2θ. (Should graph this.) 
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Board question 
‘Bent’ coin: unknown probability θ of heads.
 

Prior: f (θ) = 2θ on [0, 1]. (This is the posterior from the last
 
example.)
 

Data: toss (again) and get heads.
 

1. Find the posterior pdf to this new data. 

2. Suppose you toss again and get tails. Update your posterior from 
problem 1 using this data. 

3. On one set of axes graph the prior and the posteriors from 
problems 1 and 2. 

See next slide for solution. 
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Solution 
Problem 1 

hypoth. prior likelihood 
unnormalized 
posterior posterior 

θ ± dθ 
2 2θ dθ θ 2θ2 dθ 3θ2 dθ 

Total 1 T = 
f 1 
0 2θ

2 dθ = 2/3 1 
Posterior pdf: f (θ|x) = 3θ2 . (Should graph this.) 

Note: We don’t really need to compute T . Once we know the posterior 
density is of the form cθ2 we only have to find the value of c makes it 
have total probability 1. 

Problem 2 

hypoth. prior likelihood 
unnormalized 
posterior posterior 

θ 3θ2 dθ 1 − θ 3θ2(1 − θ), dθ 12θ2(1 − θ) dθ 

Total 1 
f 1 
0 3θ

2(1 − θ) dθ = 1/4 1 
Posterior pdf: f (θ|x) = 12θ2(1 − θ). 
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Board Question
 

Same scenario: bent coin ∼ Bernoulli(θ).
 

Flat prior: f (θ) = 1 on [0, 1]
 

Data: toss 27 times and get 15 heads and 12 tails.
 

1. Use this data to find the posterior pdf. 

Give the integral for the normalizing factor, but do not compute it 
out. Call its value T and give the posterior pdf in terms of T . 

1answer: f (θ|x) = θ15(1 − θ)12 . (Called a Beta distribution.) T 
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Beta distribution 

Beta(a, b) has density 

(a + b − 1)!
f (θ) = θa−1(1 − θ)b−1 

(a − 1)!(b − 1)! 

Observation: The coefficient is a normalizing factor so if 

f (θ) = cθa−1(1 − θ)b−1 

is a pdf, then 
(a + b − 1)! 

c = 
(a − 1)!(b − 1)! 

and f (θ) is the pdf of a Beta(a, b) distribution. 
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http://ocw.mit.edu/ans7870/18/18.05/s14/applets/beta-jmo.html
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