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18.05 Problem Set 6, Spring 2014 Solutions 

Problem 1. (10 pts.) (a) Throughout this problem we will let x be the data of 
140 heads out of 250 tosses. We have 140/250 = .56. Computing the likelihoods: 

250 250 
(.5)250 (.56)140(.44)110 p(x|H0) = p(x|H1) = 

140 140 

which yields Bayes factor 

(.5)250p(x|H0) 
= = 0.16458, 

p(x|H1) (.56)140(.44)110 

(Actually, we computed the log Bayes factor since it is numerically more stable. Then 
we exponentiated to get the Bayes factor.) 

Since we chose the probability 140/250 of H1 to exactly match the data it is not 
surprising that the probability of the data given H1 is much greater than the proba­
bility given H0. Said differently, the data will pull our prior towards one centered at 
140/250. 

(b) Here are the plots of the five priors. The vertical dashed red line is at θ = 0.5. 
The R code is posted alongside these solutions. 
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A priori I would want my prior centered at 0.5. This rules out Beta(30,70). Beta(500,500) 
seems too narrow. Beta(1,1) doesn’t really match my experience with coins, but 
I might go with it and just let the data speak for itself. Both Beta(10,10) and 
Beta(50,50) seem plausible. Even if they’re wrong they aren’t so strong that they 
would cause us to ignore the evidence in the data. 

(c) The prior probability of a bias in favor of heads is P (θ > 1/2). Looking at 
the plots of the prior pdf’s in part (b) we see that (i)-(iv) are symmetric about .5, 
therefore they predict the probability of heads is 1/2. That is they are all unbiased. 
(v) has most of it’s probability below .5. So it is strongly biased against heads. Thus, 
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2 18.05 Problem Set 6, Spring 2014 Solutions 

the ranking in order of bias from least to greatest is (v) followed by a four-way tie 
between (i)-(iv). 

(d)	 All of the prior pdf’s are beta distributions, so they have the form 

f(θ) = c1θ
a−1(1 − θ)b−1 . 

For a fixed hypothesis θ the likelihood function (given the data x) is 

250 
θ140(1 − θ)110 p(x|θ) =	 . 

140 

Thus the posterior pdf is 

f(θ|x) = c2θ
140+a−1(1 − θ)110+b−1 ∼ beta(140 + a, 110 + b). 

So the five posterior distributions (i)-(v) are beta(141, 111), beta(150, 120), beta(190, 160), 
beta(640, 610), and beta(170, 180). 

Here are the plots of the five posteriors. 

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

θ

Beta(1,1)
Beta(10,10)
Beta(50,50
Beta(500,500)
Beta(30,70)

Each prior is centered on a value of θ. The sharpness of the peak is a measure of the 
prior ‘commitment’ to this value. So prior (iv) is strongly committed to θ = .5, but 
prior (ii) is only weakly committed and (i) is essentially uncommitted. The effect of 
the data is to pull the center of the prior towards the data mean of .56. That is, it 
averages the center of the prior and the data mean. The stronger the prior belief the 
less the data pulls the center towards .56. So prior (iv) is only moved a little and 
prior (i) is moved almost all the way to .56. Priors (ii) and (iii) are intermediate. 
Prior (v) is centered at θ = .3. The data moves the center a long way towards .56. 
But, since it starts so much farther from .56 than the other priors, the posterior is 
still centered the farthest from .56. 
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(e) For each of the five posterior distributions, we compute p(θ ≥ 0.5|x) :
 

P(i)(θ > 0.5|x) = 1- pbeta(.5, 141,111) = 0.9710
 

P(ii)(θ > 0.5|x) = 1- pbeta(.5, 150,120) = 0.9664
 

P(iii)(θ > 0.5|x) = 1- pbeta(.5, 190,160) = 0.9459
 

P(iv)(θ > 0.5|x) = 1- pbeta(.5, 640,610) = 0.8020
 

P(v)(θ > 0.5|x) = 1- pbeta(.5, 170,180) = 0.2963
 

This is consistent with the plot in d), as the posterior computed from the uniform 
prior has the most density past 0.5 while the posterior computed from prior (v) has 
the least. 

(f) Step 1. Since the intervals are small we can use the relation 

probability ≈ density · Δθ. 

So 
P(i)(H0|x) = P(i)(0.49 ≤ θ ≤ 0.51|x) ≈ ·f(i)(0.5|x) · .2 

and 
P(i)(H1|x)Pi(0.55 ≤ θ ≤ 0.57) ≈ ·f(i)(0.56) · .2. 

So the the posterior odds (using prior (i)) of H1 versus H0 are approximately 

P(i)(H |x) f (0.56)  c(0.56)140(0.44)110 
1 (i) dbeta(.56,141,111)≈ = =  6.07599 

P(i)(H0|x) f(i)(0.5) dbeta(.5,141,111) c(0.5)140(0.5)110 
≈

By similar reasoning, the posterior odds (using prior (iv)) of H1 versus H0 is approx­
imately 0.00437. 

Problem 2. (10 pts.) Let A be the event that Alice is collecting tickets and B the 
event that Bob is collecting tickets. Denoting our data as D, we have the likelihoods 

1012+10+11+4+11e−50

P (D|A) = 
12!10!11!4!11! 

1512+10+11+4+11e−75

P (D|B) = . 
12!10!11!4!11! 

Moreover, we are given prior odds, O(A) = P (A) 1
  =  . Thus, our posterior odds are P (B) 10

P (D A) 10 48 

|  1 
O(A D) = 

|
O(A) = 

P (D|B) 

�(
.

15

�
e25 · ≈ 25 408 

 

)
10 

Note that the Bayes factor is about 250. 

Problem 3. (10 pts.) (a) We have a flat prior pdf f(θ) = 1. For a single data 
value x, our likelihood function is:  

0 if θ < x 
f(x|θ) =

1 if x ≤ θ  1
θ ≤

http:f(i)(0.56
http:��f(i)(0.56
http:P(i)(H1|x)Pi(0.55
http:P(i)(0.49
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Thus our table is 
prior likelihood unnormalized posterior 

hyp. f(θ) f(x|θ) posterior f(θ|x) 
θ < x 

x ≤ θ ≤ 1 
dθ 
dθ 

0 
1 
θ 

0 
dθ 
θ 

0 
c 
θ dθ 

Tot. 1 T 1 

The normalizing constant c must make the total posterior probability 1, so  1 dθ 1 
c = 1 ⇒ c = − . 

θ ln(x)x 

Note that since x ≤ 1, we have c = −1/ ln(x) > 0.
 

Here are plots for x = .2 (c = 0.621) and x = .5 (c = 1.443).
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(b) Notice that θ cannot be less than any one of x1, . . . , xn. So the likelihood function 
is given by 

0 if θ < max {x1, . . . , xn}
f(x1, . . . , xn|θ) = 

1 if max {x1, . . . , xn} ≤ θ ≤ 1.
θn 

Let xM = max {x1, . . . , xn}. So our table is 

prior 
hyp. f(θ) 

likelihood 
f(data|θ) 

unnormalized 
posterior 

posterior 
f(θ|data) 

θ < xM dθ 
xM ≤ θ ≤ 1 dθ 

0 
1 
θn 

0 
dθ 
θn 

0 
c 
θn dθ 

Tot. 1 T 1 

The normalizing constant c must make the total posterior probability 1, so  1 dθ n − 1 
c = 1 ⇒ c = 1−n . 

θn 
xM 

xM − 1 

The posterior pdf depends only on n and xM , therefore the data (.1,.5) and (.5,.5) 
have the same posteriors. Here are the plots of the posteriors for the given data. 
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(c)	 We now have xM = 0.5 so from part (b) the posterior density is  {
0 if θ < .5 

f(θ|x1, . . . , x5) = 
c 
θ5 if .5 ≤ θ ≤ 1, 

where c = 4 = 4
.  . 5−4−1 15

Now, let x be amount by which Jane is late for the sixth class. The likelihood is { 
0 if θ < x 

f(x|θ) = 
1 if θ  x
θ ≥

We have the posterior predictive probability 

f(x|x1, . . . , x5) = 
 ∫

f(x|θ)f(θ|x1, . . . , x5) dθ ⎧⎨ 

 1  11 · 4 dθ = − 4 θ−5

 
=
 124 

. 5  if 0  x < .5

5 θ 15θ 75 .5 75 

=
 
≤⎩ 
 1 1 · 4   − 4 −5

  
1 
θ 
 4 

 (x
 5
  5 dθ =  = −  − 1) if .5 

x
≤ x ≤ 1

x θ 15θ 75  75

Thus the posterior predictive probability that x ≤ 0.5 is 

P (x ≤ .5|x1, . . . , x5) = 
∫ 0.5	 

f(x|x1, . . . , xn) dx = 
0	

∫ .5 124 62 
dx = = 0.82667 . 

0 75 75

(d) The graphs or the formula in part (a) show that f(θ|x) is decreasing for θ ≥ x, 
so the MAP is when θ = x. 

(e) Extra credit: 5 points 
(i) From part (a) we have the posterior pdf f(θ|x). The conditional expectation is 

E(θ|x) = 
∫ 1 c 1  x 

θf(θ|x) dθ = 
∫ 

θ · = c(1 − x) = − 
−

. 
x θ ln(x)
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(ii) After observing x, we know that θ ≥ x, and as a result the conditional expectation 
E[θ|x] ≥ x. So the conditional expectation estimator is always at least as big as the 
MAP estimator. However, the MAP estimator is precisely x, the amount by which 
Jane is late on the first class. In this context, the MAP is not reasonable as it suggests 
that on the first class, Jane arrived as late as possible and that in the future, she will 
arrive less than x hours late. 

Problem 4. (10 pts.) (a) Leaving the scale factors as letters our table is
 

prior likelihood posterior 
hyp. f(θ) ∼ N(5, 9) f(x|θ) ∼ N(θ, 4) f(θ|x) 

2 2 

θ e −(θ−5)2/18 c dθ c e(6−θ)2/8 

�(
(θ − 5) (6 )

2 c exp −
 

− 
− θ

1
18 8 

)�
Tot. 1 1 

All we need is some algebraic manipulations of the exponent in the posterior: 

(θ − 5)2 (6 − θ)2 1 θ2 − 12θ + 36 θ2 − 10θ + 25 −
18

− = − + 
8 2

�
� 4 9 

1 

(
(
13θ2 − 148θ + 424 

�)
= − 

2  36 
 

�)
1
(
(θ 

= − 
− 74/13)2

+ k
2 36/13 

 )

where k is a constant. Thus the posterior  (
 −  (θ 74/13)2

f(θ|x) ∝ exp −
2 · 36/13

 )

This has the form of a pdf for N
 
74 , 36 . QED
13  

13
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(b) We have µprior = 5, σ2 
prior = 9, x = 6, σ2 = 4, n = 4 So we have 

1 10 5/9 + 6 1 
a = , b = 1, a + b = ⇒  µpost = = 5.9, σ2 = = .9. 

9 9 10/9 post 10/9 
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After observing x1, . . . , x4, we see that the posterior mean is close to x and the 
posterior variance is much smaller than the prior variance. The data has made us 
more certain about the location of θ. 

(c) As more data is received n increases, so b increases, so the mean of the posterior 
is closer to the data mean and the variance of the posterior decreases. Since the 
variance goes down, we gain more certainty about the true value of θ. 

(d) With no new data we are given the prior f(θ) ∼ N(100, 152). For data x = score 
on the IQ test we have the likelihood f(x θ)  N(θ, 102). Using the update formulas 
we have µ = 100, σ2 = 152 , σ2 

|
= 102 

∼
prior prior , n = 1. So a = 1/225, b = 1/100 and 

a  100 + b  80 
(i) Randall, x = 80: µpost = 

· ·
= 86.15 

a + b 
a  100 + b  150 

(ii) Mary, x = 150: µpost = 
· ·

= 134.62 
a + b 

Regression towards the mean! 

(e) Extra credit: 5 points. This is essentially the same manipulation as in part 
(a). First suppose we have one data value x1 then 

hyp. 
prior 

f(θ) ∼ N(µprior, σ2 
prior) 

likelihood 
f(x1|θ) ∼ N(θ, σ2) 

posterior 
f(θ|x1) 

θ c1e 
−(θ−µprior)

2/2σ2 
prior dθ c2e

(x1−θ)2/2σ2 
c exp −(θ − µprior)

2 

2σ2 
prior 

− 
(x1 − θ)2 

2σ2 

Tot. 1 1 

All we need is some algebraic manipulations of the exponent in the posterior. When­

( )
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ever we get a term not involving θ we just absorb it into the constant k1, k2 etc. 

 (θ − µprior)
2 (x1 − θ)2 1 

(�
θ2 − 2µpriorθ + µ2 2

prior θ2  
+ 

− 2x
 1θ + x−  =  1

2σ2 −
2σ2 

−
2 σ2 σ2 

prior prior 

1 

)�
= − 

 (
(a + b)θ2 − 2(aµprior + bx1)θ + k1 

2
2 

θ  aµ +bx

 
prior 1 

1

 )
a+b

= − 
−

2

 
1 + k2

a+b 

 

Thus the posterior 
  

2 
aµ

θ 
x1

− prior+bx1 

 1 
f(θ| ) ∝

a+b
 exp 

⎛   ⎜⎝− 
2 1

a+b 

⎞⎟⎠
  aµ +bx

This has the form of a pdf for N
 

prior 1 , 1
 
. This proves the formulas (1) when 

a+b a+b

n = 1. The formulas when n > 1 are a simple consequence of updating one data 
point at a time using the formulas when n = 1. 

Problem 5. (10 pts.) Censored data. We note that we assume that, given a 
particular dice, the rolls are independent. Let x be the censored value on one roll. 
The Bayes factor for x is 

3/4 
p(x 4-sided) = 9/10 if x = 0 

Bayes factor = 
|

= /6

p(x|6-sided) 

{ 
5
1/4 

 = 3/2 if x = 1 
1/6

Starting from the prior odds of 1, we multiply by the appropriate Bayes factor and 
get the posterior odds after rolls 1-5 are 

3 27 81 243 729 
= 1.5, = 1.35, = 2.025, = 3.0375, = 4.5562 

2 20 40 80 160 

(b) In part (a) we saw the Bayes factor when x = 1 is 3/2. Since this is more than 1 
it is evidence in favor of the 4-sided die. When x = 0 the Bayes factor is 9/10, which 
is evidence in favor of the 6-sided die. 

We saw this in part (a) because after every value of 1 the odds for the 4-sided die 
went up and after the value of 0 the odds went down. 
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