
18.05 Problem Set 5, Spring 2014 Solutions 

Problem 1. (10 pts.) (a) We know that yi − axi − b = εi ∼ N(0, σ2). Therefore 
yi = εi + axi + b ∼ N(axi + b, σ2). That is, 

1 (yi−axi−b)2 

2σ2f(yi | a, b, xi, σ) = √ e − . 
σ 2π 

(b) (i) The y values are 8, 2, 1. The likelihood function is a product of the densities 
found in part (a)   3

1 −((8−a−b)2+(2−3a−b)2+(1−5a−b)2)/2σ2 
f(8, 3, 2 | a, b, σ) = √ e 

σ 2π

3 (8 − a − b)2 + (2 − 3a − b)2 + (1 − 5a − b)2 

ln(f(8, 3, 2 | a, b, σ)) = −3 ln(σ) − ln(2π) − 
2 2σ2 

(ii) We just copy our answer in part (i) replacing the explicit values of xi and yi by 
their symbols   n  1 − j=1(yj −axj −b)2/2σ2 

f(y1, . . . , yn | a, b, σ) = √ e 
n 

σ 2π
n

ln(f(8, 3, 2 | a, b, σ)) = −n ln(σ) − 
n 
ln(2π) − 

n 
(yj − axj − b)2/2σ2 

2 
j=1 

(c) We set partial derivatives to 0 to try and find the MLE. (Don’t forget that σ is 
a contstant.) 

∂ −2(8 − a − b) − 6(2 − 3a − b) − 10(1 − 5a − b)
ln(f(8, 3, 2 | a, b, σ)) = − 

∂a 2σ2
 

−84a − 18b + 38
 
= 

2σ2 

= 0 

⇒ 70a + 18b = 38 

∂ −2(8 − a − b) − 2(2 − 3a − b) − 2(1 − 5a − b)
ln(f(8, 3, 2 | a, b, σ)) = − 

∂b 2σ2
 

−18a − 6b + 22
 
= 

2σ2 

= 0 

⇒ 18a + 6b = 22 

We have two simultaneous equations: 70a + 18b = 38, 18a + 6b = 22. 
These are easy to solve, e.g. first eliminate b and solve for a. We get 

7 107 
a = − b = 

4 12 

1 



� 
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(d)
 

x = c(1,3,5)
 
y = c(8,2,1)
 
a = -7/4
 
b = 107/12
 
plot(x,y,pch=19,col="blue")
 
abline(a=b,b=a,
 
col="magenta")
 

Here’s the R code I used to make the plot 
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Problem 2. (10 pts.) Estimating uniform parameters 
(a) The pdf for uniform(a, b) one data value is f(xi | a, b) = 1/(b − a) if xi is in the 
interval [a, b] and 0 if it is not. So the likelihood function for our 5 data values is 

1/(b − a)5 if all data is in [a, b]
f(data | a, b) = 

0 if not 

This is maximized when (b − a) is as small as possible. Since all the data has to be 
in the interval [a, b] we minimize (b − a) by taking a = minimum of data and b = 
maximum of data. 

answer: a = 1.2, b = 10.5 . 

(b) The same logic as in part (a) shows a = min(x1, . . . , xn) and b = max(x1, . . . , xn) . 

Problem 3. (10 pts.) In all three parts to this problem we have 3 hypotheses: 

HA = ‘the car is behind door A’ 
HB = ‘the car is behind door B’ 
HC = ‘the car is behind door C’. 

In all three parts the data is D = ‘Monty opens door B and reveals a goat’. 

(a) The key to our Bayesian update table is the likelihoods: Since Monty is sober he 
always reveals a goat. 

P (D|HA): HA says the car is behind A. So Monty is equally likely to pick B or C 
and reveal a goat. Thus P (D|HA) = 1/2. 

P (D|HB): Since HB says the car is behind B, sober Monty will never choose B (and 
if he did it would not reveal a car). So P (D|HB) = 0. 

P (D|HC ): Hc says the car is behind C. Since sober Monty doesn’t make mistakes he 
will open door B and reveal a goat. So P (D|HC ) = 1. 

Here is the table for this situation. 
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H P (H) P (D|H) Unnorm. Post. Posterior 
HA 

HB 

HC 

1/3 
1/3 
1/3 

1/2 
0 
1 

1/6 
0 
1/3 

1/3 
0 
2/3 

Total: 1 – 1/2 1 

Therefore, Shelby should switch, as her chance of winning the car after switching is
 
double that had she stayed with her initial choice.
 

b) Some of the likelihoods change in this setting.
 

P (D|HA): HA says the car is behind A. So Monty is equally likely to show B or C
 
and reveal a goat. Thus P (D|HA) = 1/2.
 

P (D|HB): Since HB says the car is behind B, drunk Monty might show B, but if he 
does we won’t reveal a goat. (He will ruin the game.) So P (D|HB) = 0.
 

P (D|HC ): Hc says the car is behind C. Drunk Monty is equally likely to B or C. If
 
he chooses B he’ll reveal a goat. So P (D|HC ) = 1/2.
 

Our table is now:
 
H P (H) P (D|H) Unnorm. Post. Posterior 
HA 

HB 

HC 

1/3 
1/3 
1/3 

1/2 
0 
1/2 

1/6 
0 
1/6 

1/2 
0 
1/2 

Total: 1 – 1/3 1 

So in this case switching is just as good (or as bad) as staying with the original choice. 

(c) We have to recompute the likelihoods. 

P (D|HA): If the car is behind A then sober or drunk Monty is equally likely to choose 
door B and reveal a goat. Thus P (D|HA) = 1/2. 

P (D|HB): If the car is behind door B then whether he chooses it or not Monty can’t 
reveal a goat behind it. So P (D|HB ) = 0. 

P (D|HC ): Let S be the event that Monty is sober and Sc the event he is drunk. 
From the table in (a), we see that P (D|HC , S) = 1 and from the table in (b), we see 
that P (D|HC , S

c) = 1/2. Thus, by the law of total probability 

1 17 
P (D|HC ) = P (D|HC , S)P (S) + P (D|HC , S

c)P (Sc) = 0.7 + (0.3) = .85 = . 
2 20 

H P (H) P (D|H) Unnorm. Post. Posterior 
HA 

HB 

HC 

1/3 
1/3 
1/3 

1/2 
0 

17/20 

1/6 
0 

17/60 

10/27 
0 

17/27 
Total: 1 – 9/20 1 

Thus switching gives a probability of 17/27 of winning. So switching is the best 
strategy. 
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Problem 4. (10 pts.) (a) Let H4, H6, H8, H12, and H20 are the hypotheses that we 
have selected the 4, 6, 8, 12, or 20 sided die respectively. 

We compute 

Hyp. 
H 

Prior 
P (H) 

Likelihood 
P (data|H) 

Unnorm. Post. Posterior 
P (H|data) 

H4 

H6 

H8 

H12 

H20 

1/5 
1/5 
1/5 

1/5 

1/5 

0 
0 

(1/8)n 

(1/12)n 

(1/20)n 

0 
0 

1 
5 · (1/8)

n 

1 
5 · (1/12)

n 

1 
5 · (1/20)

n 

0 
0 

1 
5T (1/8)

n 

1 
5T (1/12)

n 

1 
5T (1/20)

n 

Total: 1 – T = 1 
5 · ((1/8)

n + (1/12)n + (1/20)n) 1 

The posterior probabilities are given in the table. To find what happens as n grows 
large, we rewrite the posterior probabilities by multiplying numerator and denomina­
tor by 8n: 

1 
P (H8|data) =   n   n2 21 + +

3  5
2 n 

P (H12|data) =  
2 
 3n   n21 + +

3  n 
5

2 

P (H20|data) =   5n   n2 21 + +
3 5    

2 n n 
As n → ∞, we know that

3
→ 0 and

5
2 → 0. Thus, as n grows to infinity, 

P (H8|data) approaches 1 and the posterior probability of all the other hypotheses 
goes to 0. 

(b) Having observed n 7’s already, we know that we could not have selected the 
4-sided or the 6-sided die. We have three different groups of numbers: we can roll 1 
to 8 with all three remaining dice; 9 to 12 with the 12 and 20-sided dice; and 13 to 
20 with only the 20-sided die. Thus, rolling 1 to 8 are all equally likely, likewise 9 to 
12 and 13 to 20. Since we can get 1 to 8 from all three dice each of these values is in 
the most likely group. The next most likely values are 9 to 12 which can happen on 
two dice. Least likely values are 13 to 20. 

(c) By the law of total probability, for xn+1 = 1, 2, . . . , 8, we have 

n n n
1 1 1 1 1 1 1 1 1 

P (xn+1|data) = · · + · · + · · . 
5T 8 8 5T 12 12 5T 20 20 

For xn+1 = 9, 10, 11, 12, we have 

1 1 n 
1 1 1 n 

1 
P (xn+1|data) = · · + · · . 

5T 12 12 5T 20 20 

( ) ( ) ( )

( ) ( )
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Finally, for xn+1 = 13, 14, . . . , 20, we have 

1 1 n 
1 

P (xn+1|data) = · · . 
5T 20 20 

(d) As n → ∞, we see that P (Dn+1 = x|data = all sevens) → 1/8 for x = 1, 2, . . . , 8, 
and 0 for 9 ≤ x ≤ 20. 

Problem 5. (10 pts.) Odds. 
(a) Odds of A are P (A)/P (Ac). So both types of coin have odds 10/40. 

(b) To answer parts b-d we make a likelihood table and a Bayesian update table. 
We label our hypothesis 0.3, 0.5 and 0.7 meaning the the chosen has that probability 
of heads. Our data from the first flip is D1 is the event ‘heads on the first flip’. 

outcomes 
Heads Tails 

0.3 0.3 0.7 
hypotheses 0.5 0.5 0.5 

0.7 0.7 0.3 

Hypoth. 
H 

Prior 
P (H) 

likelihood 
P (D1|H) 

unnorm. post 
P (H)P (D1|H) 

posterior 
P (H|D1) 

0.3 
0.5 
0.7 

Total: 

0.2 
0.6 
0.2 
1 

0.3 
0.5 
0.7 
– 

0.06 
0.30 
0.14 
0.50 

0.12 
0.60 
0.28 
1 

The prior probability of heads is just the total in the unnormalized posterior column:
 
P (heads) = 0.50
 

So the prior probability of tails is 1 − P (heads) = 0.50
 

So the prior odds of heads are O(heads) = 1, i.e. 50-50 odds.
 

(c) (i) From the table we see the posterior probability the coin is the 0.3 coin is 

0.12 so the posterior odds are 
0.12 
0.88 

= 
12 
88 

= 0.136 . 

(ii) Likewise the posterior odds it’s the 0.7 coin are 
0.28 
0.72 

= 
28 
72 

= 0.389 . 

(d) The posterior predictive probability of heads is found by summing the product 
of the posterior column in the Bayesian update table and the heads column in the 
likelihood table. We get P (heads|D1) = .12 · .3 + .60 · .5 + .28 · .7 = 0.532. 

The posterior predictive probability of tails P (tails|D1) = 1 − 0.532 = 0.468. So the 
0.532 

posterior predictive odds of heads are O(heads|D1) = = 1.1368 . 
0.468 

Problem 6. (10 pts.) (a) The lawyer may correctly state that P (M |B) = 1/1000,
 
but the lawyer then conflates this with the probability of guilt given all the relevant
 

( )



.
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data, which is really P (M |B, K). From Bayes’ theorem, conditioning on B through­
out, we have: 

P (K|M, B)P (M |B) P (M |B)
P (M |K, B) =	 = . 

P (K|B) P (K|B) 

since P (K|M, B) = 1. If we let N be the event that Mrs S was murdered by someone 
other than her husband, then M and N partition K, so and the odds of Mr S’s guilt 
are 

P (M |B) P (Mr S murdered Mrs S given that he beat her and she was killed) 
O(M |K, B) = = 

P (N |B) P (Someone else murdered Mrs S given that Mr S beat her and she was killed) 

At this point, the relevant question is clear: is a battered wife more likely to be 
murdered by her husband or by someone else? I would guess the odds strongly favor 
the former. 

(b) Here are four errors in the argument 

1. The prosecutor arrived at “1 in 73 million” as follows:	 The probability that
 
1 child from an affluent non-smoking family dies of SIDS is 1/8543, so the
 
probability that 2 children die is (1/8543)2 . However, this assumes that the
 
SIDS death among siblings are independent. Due to genetic or environmental
 
factors, we suspect that this assumption is invalid.
 

2. The use of the figure “700,000 live births in Britain each year.” The prosecu­
tor had restricted attention only to affluent non-smoking families when (erro­
neously) computing the probability of two SIDS deaths. However, he does not
 
similarly restrict his attention when considering the number of births.
 

3. The rate “once every hundred years” is not valid: The prosecutor arrived at this
 
by multiplying the number of live births by the probability that two children
 
die from SIDS. The result is a non-sensical rate.
 

4. While double SIDS is very unlikely, double infanticide may be even more un­
likely. It is the odds of one explanation relative to the other given the deaths
 
that matters, and not just how unlikely one possibility is.
 

The Sally Clark case is an example of the “Prosecutor’s Fallacy.” You can read about 
it at 
http://en.wikipedia.org/w/index.php?title=Sally_Clark&oldid=629645024 

There is also a video that discusses legal fallacies at 
http://www.ted.com/talks/peter_donnelly_shows_how_stats_fool_juries 

http://en.wikipedia.org/w/index.php?title=Sally_Clark&oldid=629645024
http://www.ted.com/talks/peter_donnelly_shows_how_stats_fool_juries
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