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To appreciate the nine pairs of sinusoidal curves from on the front side, recall
that the periodic response of the damped harmonic oscillator

¥+ v+ 16y = 16 f(t)
to forcing by any single sine wave f(t) = sinnt works out neatly as

16eint
(16 —n?)+1in

y(t):Im{ }:—Psinnt——Qcosnt ,

where P = 16(16 — n?)/A and @ = 16n/A, with denominator A = (16 — n?)? + n’.
Equivalently, we expect this response y(t) = Asin(nt — v) to have an amplitude
A(n) = \/P? 4 Q? and phase lag p(n) = 7/2 ~tan"}(P/Q), both depending on the

imposed frequency n much as pictured in these two small plots:
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Thus exactly at resonance with n = 4, these formulas imply an amplitude A = 4
and phase lag ¢ = 90° . Similarly for n = 3 we expect A = >{3712/841 = 2.101 and
© = tan"'(3/7) = 23.20°, and for n = 5 we expect A = /6784/2809 = 1.554 and
@ = 7/2 + tan™!(9/5) = 150.95° . For tiny values of n, moreover, the predicted

amplitude approaches unity and the phase lag vanishes, whereas for large values of n
the amplitude A ~ 16/n? and the phase lag p — .

All this was neatly summarized for the separate harmonics n = 1,2,...,9 by the
curve pairs in the front, there including also the factor (—1)"*!/n that represents
the coeflicients of the Fourier sine series for our postulated forcing, namely the odd
function t/2 of period 27 . Those single-n forcing harmonics were all plotted as the
faint sinusoids passing through (0,0), and the inferred responses as the thicker curves.

Remarkably, just these first nine forced oscillations — each not changing at all
in amplitude with time t — added up to yield the strongly damped overall response
pictured in the Nmax = 9 frame of our earlier handout titled FOURIER IV !



