18.04 Exam #2

Friday, April 4, 1997

CLOSED BOOK

Once again, please struggle with Problems 1, 2 and 3 on separate sheets of paper ...

and also indicate your RECITATION: MI MO Tull Tul Tul . Thanks!

- (1) (a) State Cauchy's integral formula and any restrictions
 - (b) Specialize it to a circle of radius a centered on z_0
 - (c) Hence show that $|f(z_0)| \le \max |f(z_0 + ae^{i\theta})|$
 - (d) Finish this proof of the maximum modulus theorem
- (2) (a) Obtain the first four non-zero terms of the Laurent expansion that validly represents the function fin the region 0 < |z| < 2.

$$f(z) = \frac{e^z}{z^3 (z^2 + 4)}$$

(b) Use this valuable information somehow to compute or estimate the integral where the path is the unit circle |z| = 1 , to be traversed exactly once in the counterclockwise sense.

$$\oint f(z) dz$$
,

3) Use <u>residue calculus</u> to evaluate $I(a) = \int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)(x^2 + a^2)}$

for any real, positive value of the constant a, excluding only unity. And for a full score also confirm that your formula for I(a) behaves correctly in the limit as a+1, a special case that you are welcome to "regurgitate" either from residue theory reapplied to that second-order pole, or else via the old trick $x = \tan \beta$ from calculus.

18.04 Exam #2 /4

Wednesday, March 20, 1996

Again, please ...

(1) Express $S(\theta) = \sum_{k=-5}^{5} e^{ik\theta}$ as the ratio of two sines.

HINT: Employ $e^{\pm i\theta/2}$ somehow, to your great advantage.

2 Let C be the unit square with vertices at the points z = 0, 1, 1+1 and i. Once around this path, in the counterclockwise sense, please integrate

$$\iint \exp \tilde{z} dz ,$$

where \bar{z} denotes the usual complex conjugate of z .

Once around the ellipse $4x^2 + y^2 = 9$ nicknamed 'E', integrate

$$\oint_{F} \frac{\sin z}{z^2+4} dz .$$

18.04 Exam #2

Wednesday, April 3, 1991

CLOSED BOOK

As in February, please struggle with Problems 1, 2 and 3 on separate sheets of paper ...

- 1 For each of the following, determine whether the statement made is always true or sometimes false:
 - (a) If f and g have a pole at z_0 , then f + g has a pole at z_0 .
 - (b) If f has an essential singularity at z₀ and g has a pole at z₀, then f+g has an essential singularity at z₀.
 - (c) If f(z) has a pole of order m at z = 0, then f(z²) has a pole of order 2m at z = 0.
 - (d) If f has a pole at z₀ and g has an essential singularity at z₀, then the product f · g has a pole at z₀.
 - (c) If f has a zero of order m at z₀ and g has a pole of order n, n ≤ m, at z₀, then the product f ⋅ g has a removable singularity at z₀.

And remember that a $\frac{\text{few}}{\text{two}}$ words of explanation, plus even a counterexample or $\frac{\text{two}}{\text{two}}$ when appropriate, will enhance the impression that the writer is immensely wise!

- 2 Evaluate the real integral $\int_{-\infty}^{\infty} \frac{dx}{x^4 + x^2 + 1}$
- (3) a) Find the residue of $\frac{e^{iz}}{(z^2+1)^2}$ at z=i.
 - b) Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} dx$.

18.04 Exam #2

Friday, November 6, 1987

CLOSED BOOK

As usual, please ..

- (1) a) Sum the series $\sum_{n=1}^{\infty} \left(\frac{1+i}{3}\right)^n$.
 - b) Sum the series $\sum_{n=1}^{\infty} nz^n$ for all |z| < 1.
- $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx .$
- $\int_0^\infty \frac{\sqrt{x}}{x^2+4} dx .$

18.04 Exam #2

Friday, November 3, 2000

CLOSED BOOK ... and NO calculators

Again please ...

(a) Determine at least the coefficients a_1 , a_2 , a_3 , a_4 needed in this Taylor series:

$$\frac{1}{1+z+z^4} = 1 + a_1z + a_2z^2 + a_3z^3 + a_4z^4 + \dots$$

- (b) Discuss why we can be quite certain that this series would converge at least out to |z| = 2/3 if all the later coefficients were sleuthed out and used as well.
- 2 Employ our friend eix to evaluate neatly and efficiently:
 - (a) the integral $\int_{0}^{2\pi} \cos^{6}x \, dx$
 - (b) the sum $\sum_{n=0}^{\infty} \frac{\cos(nx)}{2^n}$
- 3 Use residue calculus to evaluate

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{(5-4\cos\theta)^2}$$

18.04 Exam #2

Friday, April 2, 1999

CLOSED BOOK ... and NO calculators

Once again, please struggle with these problems on separate sheets of paper ... named and numbered. Thanks.

REWARD: No proofs this time!

- Evaluate the integral $\oint_C \tan z \, dz$, assuming C to be the circle |z|=2 traversed once, counterclockwise.
- (a) Expand $\frac{z}{(z-5)^2}$ into a Laurent series about z=5.
 - (b) Obtain the first <u>THREE</u> non-zero terms of the Taylor series for that same function, now centered on z=0.
 - (c) Obtain the first $\underline{\text{THRES}}$ non-zero terms of its Laurent series centered on z=0 and valid at great distance.
- 3) Use residue calculus to evaluate $\int_{0}^{2\pi} \frac{\cos^{2}\theta}{5-4\cos\theta} d\theta .$

1 Our function $\tan z = \frac{\sin z}{\cos z}$ is plainly analytic everywhere, except at locations like $z = \pm \pi/2$ at which $\cos z$ vanishes in its denominator. Two of those singularities lie inside our circle |z| = 2.

Near the "trouble spot" $z_1 = \pm \frac{\pi}{2}$: $\tan z = \frac{1}{2-\frac{\pi}{2}}$ [sinz. $\frac{z}{z-\frac{\pi}{2}}$] where the part $[-] + 1 \cdot \frac{1}{-1} = -1$ as $z + \frac{\pi}{2}$. Hence circling that spot in a $\{\cdot\}$ sense will yield $2\pi i \cdot (-1)$ from CIF or residue calculus alike. Near $z_2 = -\frac{\pi}{2}$, on the other hand, $\tan z = \frac{1}{2+\frac{\pi}{2}}$ [sinz. $\frac{z+\frac{\pi}{2}}{\cos z}$], and now $[-] + 1 \cdot \frac{1}{2} = 1$ (axin!) thereabouts, again via l'Hoppital. Hence those two "readucs" are both -1 rather than opposites and [-] [-] [-]

(2) (a) Our
$$\frac{2}{(2-5)^2} = \frac{5+(2-5)}{(2-5)^2} = \frac{5}{(2-5)^2} + \frac{1}{2-5} + \frac{1}{2-5}$$

(b) ... =
$$\frac{2}{25} \cdot \left(\frac{1}{1-\frac{2}{5}}\right)^2 = \frac{2}{25} \left(1+\frac{2}{5}+\frac{2}{45}+...\right)^2 = \frac{2}{25} + \frac{2}{125} + \frac{2}{125} + \frac{3}{645} + ...$$

(c) ... =
$$\frac{1}{2} \cdot \left(1 - \frac{5}{2}\right)^{-2} = \frac{1}{2} \left(1 + \frac{5}{2} + \frac{25}{24} + ...\right)^2 = \frac{1}{2} + \frac{20}{22} + \frac{75}{23} + ...$$

And surely these 3 results should be weighted like 2+4+4=10 pts.

(3) Apart from a trivial sign change in the denominator, and $\cos^2\theta$ replacing $\sin^2\theta$ "upstairs", this problem was deliberately chosen to duplicate the worked-out <u>Example 1</u> from p. It3 of our text?

Much like there, our $I = \int_0^{2\pi} \frac{\cos^2\theta \cdot d\theta}{5 - 4\cos\theta} = \int_{|z|+1}^{\pi} \frac{(z+\frac{1}{z})^2/4}{5 - 2(z+\frac{1}{z})} \frac{dz}{iz} = -\frac{1}{8i} \int_0^{\pi} \frac{(z^2+1)^2}{z^2(z-\frac{1}{z})(z-2)} dz$ has a relevant simple poke at $z=\frac{1}{z}$ and a poke of 2nd order at $z=\frac{1}{z}$. (The other simple poke, at z=2, lies autoride our unit circle, and thus contributes nothing to this integral.) Those relevant residues work out as $\operatorname{Res}(\frac{1}{z}) = \frac{(\frac{1}{z}+1)^2}{4(\frac{1}{z}-2)} = -\frac{25}{6}$ and as $\operatorname{Res}(0) = +\frac{5}{2}$... from $\frac{d}{dz} \left(\frac{(z^2+1)^2}{z^2+z+1}\right)_{z=0}$. Hence our $I = -\frac{2\pi i}{8i} \left(-\frac{1}{6} + \frac{5}{2}\right) = \frac{5\pi}{12}$

- (1) (a) Since $\frac{1}{1+\epsilon} = 1 \epsilon + \epsilon^2 \epsilon^3 + \dots$, our $\frac{1}{1+(s+\epsilon^4)}$ similarly equals $1 (\epsilon + \epsilon^4) + (\epsilon + \epsilon^4)^2 (\epsilon + \epsilon^4)^3 + \dots = 1 \epsilon + \epsilon^2 \epsilon^3 + 0\epsilon^4 + \dots$
 - (b) And the $\frac{75}{convergence}$ theorem of course guarantees that such a series must converge for all |2| less than the exclistance to the nearest zero of our denominator $d+2+2^4$, because that is the only way that the f(2) in question can have a singularity. Yet from three complex numbers of modulus d, $\frac{7}{3}$ and $\binom{7}{3}^4 = \frac{16}{81} < \frac{1}{3}$ we connot yet make a sum that adds up to zero, can we?
 - (2) (a) $\cos^6 x = \frac{1}{26} (e^{cx} + e^{-ix})^6 = \frac{d}{64} (e^{6ix} + 6e^{4ix} + 16e^{2ix} + 20 + ...)$ what there and $(a+b)^6$. And by new year trais or early to know? that $\int_a^{2\pi} e^{6ix} dx = \int_a^{2\pi} e^{4ix} dx = ... = 0$, leaving us only that 20/64 as a net profit, or $\int_a^{2\pi} \cos^5 x \, dx = \frac{5\pi}{6}$
 - (b) Our sum $1 + \frac{d}{2} \cos x + \frac{d}{4} \cos x + ...$ likewise collapses via eix into two simple geometric sums $\frac{1}{2} \left[1 + \frac{e^{ix}}{2} + (\frac{e^{ix}}{2})^{2} + ... \right] + \frac{1}{2} \left[1 + \frac{e^{-ix}}{2} + (\frac{e^{-ix}}{2})^{2} + ... \right], \text{ which work}$ out as $\frac{1}{2} \left[1 \frac{e^{ix}}{2} \right]^{-1} + \frac{1}{2} \left[1 \frac{e^{-ix}}{2} \right]^{-1} = \frac{1}{2 e^{-ix}} + \frac{1}{2 e^{-ix}},$ meaning that our $\sum = \frac{4 2\cos x}{5 4\cos x} = 2$ when x = 0 $= \frac{1}{2} \sin x = \frac{1}{2} \sin x$
- (3) Via the usual $z=e^{i\theta}$ and $dz=ie^{i\theta}d\theta=izd\theta$, our actogral $\int_0^{2\pi} \frac{d\theta}{(5-4\cos\theta)^2} = \int_0^{\pi} \frac{\frac{dz}{1z}}{(5-2z-\frac{2}{z})^2} = \frac{1}{4i} \int_0^{\pi} \frac{zdz}{(z^2-\frac{z}{2}z+1)^2},$ now of course to be done around the unit winch |z|=1. Here our $f(z)=\frac{z}{(z^2-\frac{z}{2}z+1)^2} = \frac{z}{(z-2)^2(z-\frac{1}{2})^2} \text{ has a poke of order 2}$ at $z=\frac{1}{2}$ inside this circle, with residue $\text{Res}=\frac{d}{dz}\left[\frac{z}{(z-2)^2}\right]_{z=\frac{1}{2}}^{z=\frac{1}{2}}$.
 Hence our $\int_0^{\infty} d\theta=\frac{2\pi i}{4i} \cdot \frac{z_0}{27} = \frac{10\pi}{27}$.