18.04 Ancient History #1

18.04 Exam #1

Friday, March 1, 1996 -

CLOSED BOOK

Again this year, please ...

1 Where in the complex z plane can we possibly be if told only that

$$\left|\frac{z-3}{z+3}\right| = 2 ?$$

In other words, determine a more "civilized" name, shape and formula for this curious locus.

By means of a well-reasoned sketch, determine the <u>net</u> <u>increase</u> 2πN of the argument of the complex polynomial

$$f(z) = z^9 + 5z^2 + 1 = (z - z_1)(z - z_2) \dots (z - z_9)$$

as one travels smoothly around the circle |z| = 1 from z = 1 back to z = 1 one full turn in the counterclockwise sense. Hence exactly how many of the nine zeroes z_1, z_2, \ldots, z_g of the above polynomial must reside within the circle |z| = 1? Do explain your reasoning!

3 Locate \underline{all} values of z for which $\cosh z = \sinh 2z$, or equivalently

$$e^{z} + e^{-z} = e^{2z} - e^{-2z}$$

18.04 Exam #1

Friday, September 27, 1991

CLOSED BOOK

As is our custom, please struggle with each problem on a <u>separate</u> sheet of paper :

- Apply your algebraic skills (rather than your calculator) to the product $(1+i)(5-i)^4$, and thereby rederive the awesome identity $\frac{\pi}{4} = 4 \arctan(\frac{1}{5}) \arctan(\frac{1}{239})$.
- 2 Likewise reaffirm that the function $w = z^2$ maps
 - (a) the line x + y = 1, and
 - (b) both branches of the hyperbola $x^2 = 1 + y^2$ from the z-plane into a parabola and a single straight line, respectively, in the w-plane.
- 3) For any real θ evaluate the geometric sum

$$S(\theta) = \sum_{k=-5}^{5} e^{ik\theta}$$

as the ratio of two sines. HINT: Employ $e^{\pm i\theta/2}$.

CLOSED BOOK

As in past years, please struggle with Problems 1, 2 and 3 on separate sheets of paper ..

- With some eloquent words and sketches, identify clearly those regions of the complex z-plane for which
 - (a) Re $z = Re(z^3)$
 - (b) $z\bar{z} + z + \bar{z} < \text{Im } z$
- $\left(ext{ 2}
 ight)$ Only one of the three functions

$$e^{-x}\cos(xy)$$
 , $x\sin y - y\sin x$, $x^4 - 6x^2y^2 + y^4$

can be the real part of some analytic function. Identify that valid candidate, and from it also deduce the imaginary part of this analytic function, insofar as possible.

- 3 Locate all finite roots of
 - (a) $(1+z)^8 = (1-z)^8$
 - (b) $\cos z + \sin z = 0$

18.04 Exam [1

CLOSED BOOK

s in the past, please ..

whenever z_1 , z_2 , z_3 mark the vertices of an equilateral triangle in the complex z-plane, show that

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1$$

(2) Neatly and simply, where can we possibly be if:

(a)
$$z^6 + z^5 + z^4 + z^3 + z^2 = 0$$

(b)
$$e^z + \cosh z = 0$$

For the <u>non-analytic function</u> $f(z) = x^2 + iy$, evaluate the integral

taken counterclockwise once around the unit circle |z|=1.

18.04 Exam #1

Friday, March 7, 1997

CLOSED BOOK

Once again, please struggle with Problems 1, 2 and 3 on separate sheets of paper ...

and also indicate your RECITATION: M2 H3 Tull Tul Tu2 . Thanks!

1 For any analytic function f(z) = u + iv , use the Cauchy-Riemann equations (which should be clearly stated but need not be rederived here) to show that the real function

$$P(x,y) = u(x,y) v(x,y)$$

that is the product of its real and imaginary parts must itself be <u>harmonic</u> — i.e., satisfy the Laplace equation.

- 2 Show that the function $w = z^2$ maps
 - (a) the line x = 1,
 - (b) the hyperbola xy = 1, and
 - (c) the circle |z-1|=1

from the z-plane respectively into a parabola, a straight line, and the cardioid $R = 2(1 + \cos \theta)$ in the w-plane.

3 The inventor of the brilliant new function $w = itch(z) = 2e^{z} + e^{2z}$

wants to know its <u>inverse</u> itch⁻¹(w) explicitly in terms of the complex logarithm. Please help ... and also display the power of your formula (or at least of your logic) by reporting <u>all</u> possible values of z for which itch(z) = 3.

18.04 Exam #1

Friday, October 6, 2000

CLOSED BOOK ... and NO calculators

As before, please struggle with Problems 1, 2 and 3 on separate sheets of paper ...

- 1 Use complex algebra to confirm that
 - (a) the <u>sum</u> $\alpha + \beta + \gamma$ of the three angles shown is $\pi/2$

- (b) if |z| = 1, then $|z w| = |1 \overline{w}z|$ for any w
- Show that the function w(z) = z + 1/z maps that "ray" or semi-infinite straight line for which $arg(z) = \pi/3$ into a hyperbola in the w = u + iv plane. Exactly what is the u,v equation for that hyperbola, what are its asymptotes, and where (if at all) does it cross the u or v axes?
- (3) Consider that <u>branch</u> of the otherwise 4-valued function

$$f(z) = \sqrt{1 + \sqrt{z}}$$

for which f(4) = +i. Evaluate f'(4) and also f''(4), preferably by first rephrasing this problem as

$$f^{2}(z) = 1 + w(z)$$
 and $w^{2}(z) = z$,

and then suitably differentiating those two formulas to cut through this mad confusion.

- 1) Here we could start from the Cleans $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ and simply "chay away": $\nabla^{2}(uv) = \left(\frac{\partial^{2}v}{\partial x^{2}} + \frac{\partial^{2}v}{\partial y^{2}}\right)uv = \left(u_{xx} + u_{yy}\right)v + 2\left(u_{x}v_{x} + u_{y}v_{y}\right) + u\left(v_{xx} + v_{yy}\right)$... where each of the three (...) can soon be shown to counts.

 But it is even smarter to think of the new analytic function $g(z) = \frac{1}{2}[f(z)]^{2} = \frac{1}{2}(u^{2}v^{2}) + iuv$, where Im(g) = uv itself!
- (2) (a) $z = 1 + ip \rightarrow w = (1 + ip)^2 = (1 p^2) + 2ip = PALABOLA$

(b)
$$z = p + \frac{i}{p} \rightarrow W = \left(p + \frac{i}{p}\right)^z = \left(p^z + \frac{1}{p^z}\right) + 2i = \frac{STR. \ UNE}{p^z}$$

(c)
$$z = re^{i\alpha}$$
, with $r(\alpha) = 2\cos\alpha$
 $\rightarrow w = Re^{i\theta}$ with $\theta = 2\alpha$
and $R = r^2 = 4\cos^2\alpha = 2+2\cos^2\alpha$
 $= 2+2\cos\theta = \frac{CARNOD}{2}$

All three in a single w-plane picture:

3) From $W = 2e^2 + e^{2e}$ it sure follows that $e^{2e} + 2e^e + 1 = W + 1$, or that $(e^2 + 1)^2 = W + 1$, does it not?

Hence $e^2 + 1 = \sqrt{W + 1}$ with the usual 2-fold ambiguity, and $e^2 = \sqrt{W + 1} - 1$, or $Z = log[\sqrt{W - 1} - 1] = itch^{-1}(W)$ From the above, W = 3implies $e^2 = \pm 2 - 1$, or Z = eitle ZTiN or etce Li3 + Ti + 2TiN for $N = 0, \pm 1, \pm 2, etc.$

AT

- (1) a) Think of (3+i)(2+i)(4+i) = (5+5i)(4+i) = 40i, with $x=90^{\circ}$ b) $|2-w| = |2-w| = |2-w| = |\frac{4}{2}-w| = \frac{|4-w2|}{|2|} = |4-w2|$ Since $z\overline{z}=1$ here likewise 4
- Writing $Z = re^{i\pi/3} = r\left(\frac{1}{2} + i\frac{3}{2}\right)$, with "radius" r as our parameter, we have quictly that $1/2 = \frac{1}{4}e^{-i\pi/3} = \frac{1}{4}\left(\frac{1}{2} i\frac{\sqrt{3}}{2}\right)$ and thence that $W = U + iV = Z + \frac{1}{2}$, where $U = \frac{1}{2}\left(r + \frac{1}{4}\right)$ and $V = \frac{\sqrt{3}}{2}\left(r \frac{1}{4}\right)$. And this sure locks like a hyperbola, since here $\left(r + \frac{1}{4}\right)^2 \left(r \frac{1}{4}\right)^2 = 4 = \left(2u\right)^2 \frac{\left(2v\right)^2}{3}$ or $U^2 \frac{1}{3}V^2 = 1$. Or graphically:

 Plainly this (half) of that hyperbola pair crosses only the u-axis $-\frac{1}{2}$ and its two asymptotes tilt $\pm 30^\circ$ from the "workal" or V-axis. $1 \frac{1}{3}$
- (3) With f''(z) = 1 + w(z) and w''(z) = z as suggested, we are evidently dealing not only with f(t) = +i but also w(t) = -2. Now differentiating, $2f\frac{df}{dz} = \frac{dv}{dz}$ (1) and $2w\frac{dw}{dz} = 1$. (2) And using primes to abbreviate d/dz, we have also that $2ff'' + 2(f')^2 = w''$ (3) and $2ww'' + 2(w')^2 = 0$. (4) The rest is just "plug-in". For instance, eqn. (2) discloses at z = + t that w'(t) = t/2w = -1/4, and eqn. (1) follows with $f''(t) = \frac{v'}{2f} = \frac{\dot{v}}{8}$. Similarly w'' = ... and $f''(t) = -\frac{\dot{v}}{32}$