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1 Problems from the book by Sa� and Snider.

1.1 Problem 02 in section 5.6.

In general, we have:

� The order of pole of a function f (at a point z = z0) is equal to the order of the zero of the

function
1

f
(at the same point).

� The order of a zero of gn (at any point where g has a zero) is equal to n times the order of

the zero of g. Here n is a positive integer!

To apply this result to this problem we just need to �nd the order of the zero (at z = 0) of

g(z) = 2 cos(z)� 2 + z2 :

Using the Taylor expansion for cos(z) at z = 0, we �nd:

g(z) = �2 + z2 + 2 cos(z) = �2 + z2 + 2(1� z2

2
+

z4

24
+ : : :) =

z4

12
+ : : :

Thus, the order of the zero of g at z = 0 is 4. It follows that f has a pole of order 8 at z = 0.

1.2 Problem 3b in section 5.6.

We know that the function h(z) = sin

�
1

z

�
has an essential singularity1 at z = 0, thus the function

g(z) = sin

�
1

1� z

�
has an essential singularity at z = 1. Consider now the function

f(z) = zg(z) = z sin

�
1

1� z

�
:

It is clear that f has a single zero at z = 0 (since g(0) 6= 0), an essential singularity at z = 1 and

no other singularity in the �nite complex plane.

1For any entire function F = F (z) that is not a polynomial, F (1=z) has an essential singularity at

z = 0. Can you see why?
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1.3 Problem 08 in section 5.6.

We will show that cos

�
1

z

�
achieves every complex value c in the disk jzj < �, where � is any positive

constant. This will verify Picard's theorem in this case.

We begin by recalling that we can express cos�1 in terms of the logarithm (see equation 9 in section

3.3, page 92 of the book). Namely:

cos�1(c) = �i log(c+
p
c2 � 1) = �iLog(c+

p
c2 � 1) + 2n�i:

By picking a suÆciently large n, we can �nd a value w of cos�1(c) such that jwj > ��1. Then, for

z =
1

w
(which clearly satis�es jzj < �), we have:

cos

�
1

z

�
= cos(w) = cos(cos�1(c)) = c :

Notice that in this calculation we pick one value for
p
c2 � 1 (does not matter which) and stick with

it throughout.

1.4 Problem 12 in section 5.6.

If f has a pole of order m at z0, then we can write

f(z) =
1

(z � z0)m
h(z) ;

where h is analytic at z = z0 and h(z0) 6= 0. Thus

g(z) =
f 0(z)

f(z)

=
�m(z � z0)

�m�1h(z) + (z � z0)
�mh0(z)

(z � z0)�mh(z)

=
1

z � z0

�mh(z) + (z � z0)h
0(z)

h(z)
:

Let j(z) =
�mh(z) + (z � z0)h

0(z)

h(z)
. Then we have

� j is analytic at z = z0, since h(z0) 6= 0.

� j(z0) =
�mh(z0)

h(z0)
= �m 6= 0.

Therefore j has no pole or zero at z = z0. Thus g(z) =
1

z � z0
j(z) has a simple pole at z = z0 and

the coeÆcient of (z � z0)
�1 in the Laurent expansion of g is g�1 = �m; that is: the negative of the

order of the pole.
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1.5 Problem 04 in section 5.7.

Set z =
1

w
. By de�nition, f(z) has an essential singularity at z =1 if f(w) has an essential

singularity at w = 0. Interpreting behavior of f(z) at z =1 as behavior of f(w) at w = 0, we get

the following formulation for Picard's theorem at z =1:

If f is a function with essential singularity at 1, then f assumes every complex value (with possibly

one exception) in any open set that contains 1 (i.e. any open set whose complement is bounded).

For f(z) = ez, we need to show that for any r > 0, f assumes every complex value | except possibly

one (obviously 0 in this case) | in the open set Nr = fjzj > rg. We do this next.

Given any complex number c 6= 0 and r > 0, we have:

log(c) = Log(c) + 2in� ;

where n 2 Z. Since Log(c) is a constant, we can �nd n large enough so that

jLog(c) + 2in�j � 2n� � jLog(c)j > r:

Setting z = Log(c) + 2in� 2 Nr, we have f(z) = c. This �nishes the veri�cation of the theorem for

this function.

1.6 Problem 04 in section 5.8.

Consider a function f = f(z), analytic in a deleted neighborhood of z = 0, such that f(
1

n
) = 0

for all n = �1;�2; : : : Since f is analytic in a deleted neighborhood of z = 0, f has an isolated

singularity at z = 0. There are then three possible cases:

1. f has removable singularity at z = 0. In this case, we can de�ne f(0) = c (for some c) so that

f is analytic in the whole neighborhood of z = 0. However, by hypothesis, f(
1

n
) = 0 for all n.

Thus f vanishes on the sequence f 1
n
g, which converges to 0. Then, by Theorem 22 (section

5.8 page 236), f is identically zero.

2. f has a pole at z = 0. Then, by Lemma 6 (section 5.6, page 221), jf(z)j ! 1 as z ! 0. This

cannot happen given the condition that f(
1

n
) = 0.
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3. f has an essential singularity at z = 0. This is possible, for example: f(z) = sin(
�

z
) satis�es

this condition.

In summary: case 2 cannot happen and if case 1 happens, then f is identically zero. Therefore,

either f is identically zero or it has an essential singularity at z = 0.

1.7 Problem 06 in section 6.1.

Following the same idea used in problem 5.6.12, write

f(z) = (z � z0)
mh(z) ;

where h is analytic at z = z0 and h(z0) 6= 0. Thus

g(z) =
f 0(z)

f(z)
=

m

z � z0
+

h0(z)

h(z)
:

Since h(z0) 6= 0, the second term on the right of this equality (i.e.:
h0(z)

h(z)
is analytic at z = z0). It

follows that g has a simple pole at z = z0, with residue:

Res(g; z0) = m :

Notice that, in the case of a pole of order m, problem 5.6.12 tells us that Res(g; z0) = �m. Thus

g = f 0=f can be used to count poles and zeros via its residues.

1.8 Problem 07 in section 6.1.

Let f(z) = e1=z sin(1=z). Then f has an essential singularity at z = 0 and is analytic everywhere

else. Thus, to evaluate the requested integral, we just need to calculate the reside of f at z = 0.

The Laurent expansion for f(z) at z = 0 is the product of the Laurent expansions for its two factors,

namely:

e1=z = 1 +
1

z
+

1

2z2
+ : : :

sin(
1

z
) =

1

z
� 1

6z3
+ : : :

f(z) =
1

z
+

1

z2
+

1

3z3
+ : : :
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Thus Res(f ; 0) = 1, so that: Z
jzj=1

f(z) = 2�iRes(f ; 0) = 2�i :

Note: The presumption here is that the (unit circle) path is being traced counterclockwise (other-

wise the sign of the integral will change), though the problem statement in the book says nothing

about this.

1.9 Problem 02 in section 6.2.

To evaluate

I =
Z �

0

8d�

5 + 2 cos �
;

we begin by using the fact that cos(�) is even and periodic (thus cos(�) = cos(2� � �)) to replace

the integral by one over [0; 2�]. That is

I =
Z �

0

8d�

5 + 2 cos �
=
Z

2�

�

8d�

5 + 2 cos �
;

so that:

I =
Z

2�

0

4d�

5 + 2 cos �
:

Substitute now into this integral:

cos � =
1

2
(z +

1

z
) and d� =

dz

iz
;

where z = ei�. Then:

I =
Z
C

�4idz
z2 + 5z + 1

;

where the integration is over the unit circle (counter-clockwise) C. The two zeroes of the denomi-

nator g(z) = z2 + 5z + 1 in the integrand are:

z1 =
�5 +

p
21

2
and z2 =

�5�
p
21

2
:

Note now that z2 lies outside C and z1 lies inside C, with residue for
1

g
at z = z1 given by:

Res(
1

g
; z1) = lim

z!z1
(z � z1)

1

(z � z1)(z � z2)
=

1

z1 � z2
=

1p
21

:

Now we evaluate the integral using residues:

I = �4i� 2�i� Res(
1

g
; z1) =

8�p
21

:
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2 Other problems.

2.1 Problem 8.1 in 1999.

Statement.

Find three terms in the Laurent expansion for

f(z) =
1

sin2(z)
;

valid in the annulus � < jzj < 2�.

Note: these three terms could be the three \central" ones (i.e.: the ones proportional to zn, with

n = �1, n = 0 and n = 1); but any three will do.

Solution.

The entire function sin2(z) has exactly three zeroes in the open disk D = fjzj < 2�g; namely at

z = 0, z = � and at z = ��. Thus
1

sin2(z)
has exactly three poles (and no other singularities) in

this region. The idea in computing the requested Laurent expansion is then:

1. First subtract the singular part of the function at the three poles, so as to get an analytic

function in the open disk D = fjzj < 2�g.

2. Find the Taylor expansion for the analytic function in the open disk D, constructed in the

�rst step.

3. Add (to the Taylor expansion constructed in the second step) the Laurent expansions for the

singular parts.

In order to implement this program, we �rst need to �nd out what the singular parts at the poles

are. We do this (and quite a bit more next).

Using the Taylor expansion for sin(z) at z = 0, we can write

sin(z) = z(1� �(z)) ; where � =
1

6
z2 � 1

120
z4 +

1

5040
z6 + : : : (2.1.1)
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is entire and vanishes at z = 0. Thus2

1

sin(z)
=

1

z(1� �)
=

1

z
(1 + �+ �2 + : : :) =

1

z
(1 +

1

6
z2 +

7

360
z4 +

31

15120
z6 + : : :)

=
1

z
+

1

6
z +

7

360
z3 +

31

15120
z5 + : : : (2.1.2)

which must be the Laurent expansion for
1

sin(z)
, valid on 0 < jzj < �. Squaring this we get:

1

sin2(z)
=

1

z2
+

1

3
+

1

15
z2 +

2

189
z4 + : : : ; (2.1.3)

which is the Laurent expansion for
1

sin2(z)
, valid on 0 < jzj < �. Notice that

g(z) =
1

sin2(z)
� 1

z2
=

1

3
+

1

15
z2 +

2

189
z4 + : : : =

1X
n=0

gn z
n (2.1.4)

is analytic on jzj < �. Because
1

sin2(z)
is periodic (of period �), its Laurent expansions valid on

0 < jz � �j < � follow from (2.1.3) above (by the changes of variable z ! z � �).

It now follows that

h(z) =
1

sin2 z
� 1

(z + �)2
� 1

(z � �)2
� 1

z2
(2.1.5)

is analytic in the open disk D = fjzj < 2�g. Thus it has a Taylor expansion

h(z) =
1X
n=0

hnz
n ; (2.1.6)

that converges for jzj < 2�. This completes the �rst step in the plan.

We have

1

(z � �)2
= � d

dz

1

z � �
= � d

dz

1

z

1

1� �=z
= � d

dz

1

z

1X
n=0

�n

zn
= � d

dz

1X
n=1

�n�1

zn

=
1X
n=2

(n� 1)
�n�2

zn
(valid on jzj > �); (2.1.7)

with a similar expansion for
1

(z + �)2
. Thus we can write (using (2.1.5) and (2.1.6)):

1

sin2(z)
=

1X
n=0

hnz
n +

1

z2
+

1X
n=1

(4n� 2)
�2n�2

z2n
; (2.1.8)

2This is the kind of manipulation that can be made painless by using a symbolic program, such as Maple.
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which converges for � < jzj < 2� and thus provides the desired Laurent expansion. Notice that

this last expansion converges for � < jzj < 2� because (2.1.6) converges for jzj < 2� while (2.1.7)

converges for jzj > �.

We have now completed the �rst and third steps in the plan. As far as the answer to the

stated problem, (2.1.8) is enough | since it provides far more than three terms in the requested

Laurent expansion (all the negative terms, in fact). We will, however (for completeness) indicate

now how to do the second step in the program; that is: how do we �nd the coeÆcients hn in

(2.1.6)?.

We begin by considering the Taylor expansions for
1

(z � �)2
valid near zero. Following the same

idea that we used in (2.1.7), it is clear that:

1

(z � �)2
=

d

dz

1

�

1

1� z=�
=

d

dz

1

�

1X
n=0

zn

�n
=

1X
n=0

(n + 1)
zn

�n+2
(valid on jzj < �); (2.1.9)

with a similar expansion for
1

(z + �)2
. Thus we can write (using (2.1.4) and (2.1.5)):

h(z) = g(z)� 1

(z + �)2
� 1

(z � �)2
=

1X
n=0

(gn � (n+ 1)
2�n

�n+2
)zn ; (2.1.10)

where �n = 1 for n even and �n = 0 for n odd. Now, this must be the Taylor expansion for h(z)

valid on jzj < 2� (i.e.: (2.1.6)). Why? Well, since the Taylor expansion for g(z) in (2.1.4) and

the Taylor expansions for
1

(z � �)2
in (2.1.9) all converge for jzj < �, we know that (2.1.10) will

converge for at least jzj < �. This means that it must be the Taylor series for h(z) centered at

z = 0 | and we know this series must converge in a disk reaching out to the nearest singularities

at z = �2�.

This �nishes the problem. Using (2.1.1) and (2.1.2) we can compute the coeÆcients gn in (2.1.4) up

to any desired order (though the calculations get hairy for n large). Then (2.1.8) gives the requested

Laurent expansion, with hn = gn � 2 �n (n+ 1) ��n�2 | as given by (2.1.10).

THE END.


