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18.04 MIT, Fall 1999 (Rosales, Schlittgen and Zhang). Answers to Problem Set # 7. 2

1 Problems from the book by Sa� and Snider.

1.1 Problem 04 in section 5.4.

Part (a): The series:

1X
j=1

zj

j2
.

Clearly, the radius of convergence for this series is 1. Notice now that, for jzj � 1 we have

jzj=j2j � (1=j2). Furthermore, the series of real numbers

1X
j=1

j�2 converges. Thus, by the Weier-

strass M-test,

1X
j=1

zj

j2
converges uniformly on the closed disc jzj � 1 :

That is: in this example the series converges everywhere on its circle of convergence jzj = 1.

Part (b): The series:

1X
j=1

zj

j
.

Again, the radius of convergence is 1. Now: when z = 1, the series

1X
j=1

j�1 does not converge (by

the integral test), and when z = �1, the series
1X
j=1

(�1)j j�1 does converge (by the alternating series

test). Thus, in this example the series converges for some points on its circle of convergence (at

least for z = �1) and diverges for others (at least for z = 1).

Part (d): The series:

1X
j=1

zj.

Again, this series has a radius of convergence equal to 1. When jzj = 1, we notice that the sequence

jzjj does not converge to 0 (since all of its terms are equal to 1). Therefore the series

1X
j=1

zj cannot

converge when jzj = 1. Thus, in this example the series does not converge at any of the points on

its circle of convergence.

1.2 Problem 10 in section 5.4.

For the Fibonacci numbers, we know that a0 = a1 = 1 and

an = an�1 + an�2 for n � 2 : (1.2.1)

De�ne now
1

f(z) =
1X
n=0

anz
n;

1The function f is known as the generating function for the sequence.
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where the coeÆcients an are given by the Fibonacci sequence. Multiplying (1.2.1) by zn and adding

over n we obtain: f(z)� a0 � a1z = zf(z)� a0z + z2f(z). That is

1 + (z2 + z � 1)f(z) = 0:

Let us double check this:

1 + zf(z) + z2f(z) = 1 +

1X
n=0

anz
n+1

+

1X
n=0

anz
n+2

= 1 +

1X
k=1

ak�1z
k
+

1X
k=2

ak�2z
k

= 1 + a0z +
1X
k=2

(ak�1 + ak�2)z
k

= 1 + z +
1X
k=2

akz
k
=

1X
k=0

akz
k
= f(z) :

We can solve this for f(z) and then do a partial fraction decomposition, to obtain

f(z) =

1

1� z � z2
=

�1�
z + 1�

p
5

2

� �
z + 1+

p
5

2

� =

1=
p
5�

z + 1+
p
5

2

� + �1=
p
5�

z + 1�
p
5

2

�

=

2

p
5

�
1 +

p
5

� � 1�
1 +

2

(1+
p
5)
z
� � 2

p
5

�
1�

p
5

� � 1�
1 +

2

(1�
p
5)
z
�

= � 1p
5

� (1�
p
5)

2

� 1�
1�

�
1�
p
5

2

�
z
� + 1p

5

� (1 +
p
5)

2

� 1�
1�

�
1+
p
5

2

�
z
�

= � 1p
5

� 1�
p
5

2

1X
n=0

 
1�

p
5

2

!n

zn +
1p
5

� 1 +
p
5

2

1X
n=0

 
1 +

p
5

2

!n

zn

=

1X
n=0

1p
5

2
4
 
1 +

p
5

2

!n+1

�
 
1�

p
5

2

!n+1
3
5 zn ;

which proves the desired result. Here we have used: the geometric series expansion and the fact

that

2

(1 +

p
5)

= �1�
p
5

2

.

1.3 Problem 02 in section 5.5.

The principal branch of

p
z has a branch cut on the negative real axis, thus it is not analytic on

any annulus around the origin. Therefore, no Laurent series expansion exists in C� f0g. In fact
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no branch of

p
z has a Laurent series expansion in the domain C� f0g.

1.4 Problem 05 in section 5.5.

To �nd the Laurent series of

(z + 1)

z(z � 4)
3
in a punctured disc of radius 4 around z0 = 4, let us rewrite

this expression so that we can use the geometric series:

(z + 1)

z(z � 4)
3

=

1

(z � 4)
3

�
1 +

1

z

�

=

1

(z � 4)
3

 
1 +

1

4

�
 

1

1 +
z�4
4

!!

=

1

(z � 4)
3

 
1 +

1

4

1X
n=0

�
z � 4

�4

�n!

=

1

(z � 4)
3
�

1X
k=�3

��1
4

�k+4
(z � 4)

k :

In the last line we have made the substitution k = n� 3.

1.5 Problem 06 in section 5.5.

To �nd the Laurent series for z2 cos

�
1

3z

�
in jzj > 0, we make use of the Taylor series for the cosine,

which we know well:

cos(�) =
1X
n=0

(�1)n
(2n)!

�2n :

Thus

z2 cos

�
1

3z

�
= z2

1X
n=0

(�1)n
(2n)!

1

(3z)2n

=

1X
n=0

(�1)n
(2n)!

1

3
2n
z2(1�n) :

2 Other problems.

2.1 Problem 7.1 in 1999.

Statement: Find a formula for

f(x) =
1X
n=1

(�1)n sin(nx)
n

; (2.1.1)
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where x is real and �� � x � �.

Write a short program to calculate and plot the sum of the series. In MatLab you could de�ne

an array of values in �� � x � � by:

x = {pi + 2*pi*(0:750)/750;

Then do a loop to sum (say) the �rst 3000 terms:

f = 0;

for n = 3000:{1:1

f = f + (({1)^n)*(sin(n*x)/n);

end

Finally, plot:

plot(x, f)

Look at the plot. Can you get this from your formula?

Note: this series converges rather slowly (this is why I suggest a lot of terms in the summation).

This series is also a good example of a non-uniformly convergent series of functions. At any given

x, the error after summing N terms is less than C(x)=N , but C(x) is not bounded.

The stu� below is highly recommended; do it (although we will not grade it, since it is an

open-ended thing, what happens here is very important and it will show up later in the course).

To see how the convergence actually occurs, try plotting partial sums (as above), but instead of

looking at a lot of terms, look at what happens as you add (say) 10, 20, 50, 100, 150 terms. Look

carefully at what goes on near x = � and x = ��. Now do the same for the series where the n-th

term is sin(nx)=n and look at what happens near x = 0.

Solution: To sum the series f(x) =
1X
n=1

(�1)n sin(nx)
n

, we begin by recalling De Moivre's formula:

einz = cos(nz) + i sin(nz)

and the Taylor expansion for the principal branch of the logarithm about z = 1:

Log(1 + z) = �
1X
n=1

(�1)n
n

zn : (2.1.2)

This leads us to consider

�Log(1 + eix) =
1X
n=1

(�1)n e
inx

n
=) Im

�
� log(1 + eix)

�
=

1X
n=1

(�1)n sin(nx)
n

: (2.1.3)
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Now, since Log(1 + eix) = ln j1 + eixj+ iArg(1 + eix), we �nally obtain:

1X
n=1

(�1)n
n

sin(nx) = �Arg(1 + eix) = � tan
�1

 
sin(x)

1 + cos(x)

!

= � tan
�1

 
2 sin(x=2) cos(x=2)

2 cos
2
(x=2)

!

= � tan
�1

 
sin(x=2)

cos(x=2)

!

= �1

2

x :

The last equality here is valid only for �� < x < � (outside this range di�erent branches of tan
�1

come into play). Obviously � = Arg(1 + eix) is periodic of period 2� and takes values only in the

range j�j � �

2

(this all agrees with the fact that the in�nite sum on the left should be periodic of pe-

riod 2� in x). Thus, for example, for � < x < 3� the sum is equal to � � 1

2

x and for �3� < x < ��

it is equal to �� � 1

2

x. The sum is (in fact) a sawtooth function and (2.1.1) is just its

Fourier Series.

Figures 2.1.1 and 2.1.2 show some partial sums for the series in (2.1.1). Notice that the convergence

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

x

S
u

m
 [

 (
-1

)n
 s

in
(n

x)
/n

 ]

 Series sum.  First 10 terms.

-4 -3 -2 -1 0 1 2 3 4

-1.5

-1

-0.5

0

0.5

1

1.5

x

S
u

m
 [

 (
-1

)n
 s

in
(n

x)
/n

 ]

 Series sum.  First 50 terms.

Figure 2.1.1: Plots of the partial sums with 10 and 50 terms for the in�nite series in (2.1.1).

to the limit is reasonable for x away from the discontinuities at x = n�. Near the discontinuities

oscillations in the sums appear. These oscillations do not disappear as more terms are added to
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Figure 2.1.2: Plot of the partial sum with 250 terms for the in�nite series in (2.1.1), with a blow up

of the region near the discontinuity at x = �.

the sum. In fact, what happens is (let N be the number of terms added in the partial sum for the

series) that:

� The amplitude of the oscillations remains constant, about 12% of the jump across the discon-

tinuity.

� The region over which the oscillations occur gets narrower, with its width O(N�1). This is

illustrated by the detail shown on the right picture in �gure 2.1.2.

The fact that oscillation appear near discontinuities in the partial sums of Fourier Series (as de-

scribed above) is general and it is known by the name of

Gibbs Phenomenon.

It is related to the fact that series such as (2.1.1) do not converge uniformly in x. You can experiment

more with Fourier Series and the Gibbs phenomenon using the MatLab scripts in the 18.04 Toolkit

in Athena (speci�cally: GibbsDemo and sinSERIES).

Finally: an important clari�cations that we should make regarding the calculations here:

Generally we can only be sure of the convergence of a Taylor series inside its circle of convergence.
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However, above in (2.1.3) we used the Taylor series (2.1.2) for Log(1 + z) right on its circle of

convergence! This needs some justi�cation:

We show now that the Taylor series (2.1.2) converges everywhere in its circle of convergence, except

for z = �1 (but the convergence is not uniform). We start with the formula for the partial sums of

the geometric series

NX
0

(�1)n�n = 1 + (�1)N�N+1

1 + �
:

Integrate now both sides in this equality along the path � = rz in the complex �{plane, where

0 � r � 1 and z 6= �1 is some arbitrary point with jzj � 1. This yields:

�
N+1X
1

(�1)n
n

zn =

Z 1

0

1 + (�1)NzN+1rN+1

1 + rz
zdr

=

Z 1

0

z

1 + rz
dr + (�1)NzN+2

Z 1

0

rN+1

1 + rz
zdr

= Log(1 + z) + (�1)NzN+2

Z 1

0

rN+1

1 + rz
zdr :

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(2.1.4)

Now, because jzj � 1 and z 6= �1, it follows that: j1 + rzj �M = M(z) for 0 � r � 1; where

M(z) > 0 (though M vanishes as z ! �1). Thus we can estimate the size of the last term in

(2.1.4) by: �����(�1)NzN+2

Z 1

0

rN+1

1 + rz
zdr

����� � 1

M

Z 1

0

rN+1dr =
1

(N + 2)M
: (2.1.5)

Using this in (2.1.4), we see that the sum on the left converges to Log(1 + z) as N !1 | which

is what we set out to prove.

Notice that the estimate in (2.1.5) is not uniform in z, since M vanishes for z ! �1. Thus the

convergence of the Taylor series degrades as we approach z = �1.

Remark 2.1.1 In the problem statement it was mentioned that the series in (2.1.1) did not converge

uniformly, with an error on the partial sums of the form C(x)=N , where C was not bounded.

Applying the results of the proof above to z = eix and using (2.1.3), we see that this result follows

| with C =

1

M(eix)
.

THE END.


