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1 Problems from the book by Sa� and Snider.

1.1 Problem 04 in section 4.4.

Let us �rst of all parametrise the contour �0:

�0 : z(t) =

8><
>:

eit; 0 � t � 2� ;

ei(4��t); 2� � t � 4� :

We want to deform this contour continuously to the contour �1 : z(t) = 1; 0 � t � 4�: This is

achieved by the following intermediate set of contours,

�s : z(s; t) =

8><
>:

ei(1�s)t; 0 � t � 2� ;

ei(1�s)(4��t); 2� � t � 4� ;

where 0 � s � 1.

To check that the conclusion of the Deformation Invariance Theorem holds for this example, let us

split the contour �0 into two parts: Let 
a be the part of the contour that has counterclockwise

direction and let 
b be the part of the contour that has clockwise direction. Notice that 
b = �
a,
so that (by equation (3) of page 115 in the book):

Z
�0

f(z)dz =

Z

a

f(z)dz +

Z

b

f(z)dz =

Z

a

f(z)dz �
Z

a

f(z)dz = 0 :

For the integral along �1, we can use theorem 5 of section 4.2:

����
Z
�1

f(z)dz

���� � max
z2
1

jf(z)j � length(�1) = jf(1)j � 0 = 0 :

Thus both integrals (along �0 and �1) vanish, and therefore are equal.

1.2 Problem 07 in section 4.4.

Part (a)

Since f(z) = u(x; y) + iv(x; y) is analytic, we know that u and v satisfy the Cauchy-Riemann equa-

tions:
@u

@x
=

@v

@y
and

@u

@y
= �@v

@x
:
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The vector �eld corresponding to �f = u� iv is V = (u;�v), that is: V1 = u and V2 = �v. Thus,
@V1

@y
=

@u

@y
= �@v

@x
=

@V2

@x
;

@V1

@x
=

@u

@x
=

@v

@y
= �@V2

@y
:

From the �rst line here we see that the vector �eld is irrotational and from the second we see that

it is also solenoidal.

Part (b)

Now suppose that V = (V1; V2) is a continuously di�erentiable, irrotational, solenoidal vector �eld.

Thus
@V1

@y
=

@V2

@x
and

@V1

@x
= �@V2

@y
:

If we now let f = V1 � iV2, we see that the real and imaginary parts of f satisfy the Cauchy-Riemann

equations and are continuously di�erentiable. By Theorem 5 of section 2.4, f is di�erentiable and

hence analytic.

1.3 Problem 10 in section 4.4.

Consider the contour integral (for the choices of f below)I
jzj=2

f(z) dz : (1.3.1)

Part (a)

f(z) =
z

z2 + 25
=

z

(z + 25i)(z � 25i)
. This function is analytic everywhere, except at the values

z = �25i. Since both of these points lie outside the circle jzj = 2, the integral (1.3.1) vanishes by

Cauchy's Theorem.

Part (b)

f(z) = e�z(2z + 1). This function is analytic everywhere, so that the integral (1.3.1) vanishes by

Cauchy's Theorem.

Part (c)

f(z) =
cos z

(z � 3 + i)(z � 3� i)
. This function is analytic everywhere, except at the values z = 3� i.

Since both of these points lie outside of the circle, the integral (1.3.1) vanishes by Cauchy's Theorem.
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Part (d)

f(z) = Log(z + 3). This function is analytic everywhere, except when Arg(z + 3) = �, i.e. except

on the real axis with Re(z) < �3. So it is analytic inside the circle and the integral (1.3.1) vanishes

by Cauchy's Theorem.

Part (e)

f(z) = sec(z=2) = 1= cos(z=2). This function is analytic everywhere, except when the denominator

vanishes, which occurs when z = � + 2k� for k an integer. Since �� < 2 and � > 2, this function

is analytic inside the circle and the integral (1.3.1) vanishes by Cauchy's Theorem.

1.4 Problem 18 in section 4.4.

Consider the contour integral

I =

I
jzj=2

dz

z2(z � 1)3
:

We show now that this integral vanishes.

Step (a)

The integrand is a function analytic everywhere, except when z = 0 or z = 1. We can de�ne the

domain D to be the complex plane without the interior of the circle jzj = 1:5 for example. (Note

that this domain is not simply connected, but it doesn't need to be for this argument.) The domain

D contains the circles jzj = 2 and jzj = R for any R > 2, and these circles can be continuously

deformed into each other (by continuously varying the radius). We can therefore use theorem 8 of

section 4.4, to conclude that I = I(R) for every R > 2.

Step (b)

On the contour, we have z = R cos � + iR sin �. Thus jzj = R and

jz � 1j =
q
(R cos � � 1)2 +R2 sin2 � =

p
R2 + 1� 2R cos � �

p
R2 + 1� 2R = R� 1 :

Thus (on the contour) we have

����� 1

z2(z � 1)3

����� � 1

R2(R� 1)3
and by theorem 5 of section 4.2,

jI(R)j � 1

R2(R� 1)3
� (length of path) =

2�

R(R� 1)3
: (1.4.1)
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Step (c)

From (1.4.1) it follows that lim
R!1

I(R) = 0.

Step (d)

We know that I = I(R) for all R > 2. Now, suppose I 6= 0, say jIj = � > 0. But (from part (c)) we

know that there is an R0 > 2, such that jI(R)j < � for all R � R0. But then, for R � R0 we have

� = jIj = jI(R)j < �, which is a contradiction. Hence I = 0.

1.5 Problem 06 in section 4.5.

Consider the integral

I =

Z
�

eiz

(z2 + 1)2
dz =

Z
�

eiz

(z + i)2(z � i)2
dz ; (1.5.1)

where � is the circle jzj = 3 traversed once in the counterclockwise direction. Since the integrand is

analytic everywhere, except at z = �i, we can use the deformation invariance theorem (theorem 8

of section 4.4) and apply it to the domain D, where D is the complex plane without the points �i.

We deform the contour as indicated in �gure 1.5.1, to obtain

I =

Z

1

eiz

(z2 + 1)2
dz +

Z

2

eiz

(z2 + 1)2
dz

= 2�i

"
d

dz

 
eiz

(z + i)2

!�����
z=i

+
d

dz

 
eiz

(z � i)2

!�����
z=�i

#

=
�

e
:

where (in the second step) we used theorem 19 of section 4.5.

1.6 Problem 08 in section 4.5.

Consider the circle jz � z0j = r. Let us parametrise it as follows: z(�) = z0 + rei�; 0 � � � 2�.

Then Cauchy's Integral Formula tells us that if f is analytic inside and on the circle, then

f(z0) =
1

2�i

I
jz�z0j=r

f(z)

z � z0
dz

=
1

2�i

Z 2�

0

f(z0 + rei�)

z0 + rei� � z0
riei�d�
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Figure 1.5.1: Deformation of the contour � in (1.5.1).

=
1

2�

Z 2�

0
f(z0 + rei�)d� ;

where we have used the fact that
dz

d�
= riei�d�. More generally, using theorem 19 of section 4.5:

f (n)(z) =
n!

2�i

I
jz�z0j=r

f(z)

(z � z0)n+1
dz

=
n!

2�i

Z 2�

0

f(z0 + rei�)

rn+1ei(n+1)�
riei�d�

=
n!

2�rn

Z 2�

0
f(z0 + rei�)e�in�d� :

1.7 Problem 14 in section 4.5.

Consider the function

G(z) =
1

2�i

Z
�

cos �

� � z
d� ;

where � is a simple closed positively oriented contour that passes through the point 2 + 3i. The

function cos(�) is is analytic everywhere, so that
cos(�)

(� � z)
is analytic everywhere, except when � = z.

� If z lies outside of �, then from Cauchy's Theorem G(z) = 0, since the integrand is analytic

inside the contour. Thus

lim
z!2+3i

G(z) = 0 when z approaches 2 + 3i from outside �.
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� If z lies inside �, we can use Cauchy's Integral Formula to evaluate the integral. Then

G(z) = cos(z). Thus

lim
z!2+3i

G(z) = cos(2 + 3i) when z approaches 2 + 3i from inside �.

1.8 Problem 06 in section 4.6.

Let f(z) be an entire function such that f (5)(z) is bounded in the whole plane. Then f is a polynomial

of degree at most 5.

Since f is entire, it is in�nitely many times di�erentiable, and each of its derivatives is also entire.

In particular, f (5) is entire and (by assumption) it is bounded in the whole plane. By theorem 21

of section 4.6 (Liouville's Theorem), we conclude that f (5) is a constant function. Integrating

f (5) �ve times we see that f must be a polynomial of degree at most 5.

1.9 Problem 14 in section 4.6.

Minimum Modulus Principle: Let f be analytic in a bounded domain D and continuous up to

and including its boundary. Then, if f is non-zero in D, the modulus jf(z)j attains its minimum

value on the boundary of D.

To show this we will apply the maximum modulus principle to the function g(z) = 1=f(z). However,

we must be careful, since the maximum modulus principle requires that the function it is applied

to be analytic in the domain D and continuous up to and including its boundary. It should be clear

that the only way g(z) can fail to satisfy these conditions is if f(z) vanishes somewhere (which, by

hypothesis, can only happen on the boundary). Thus we distinguish two cases:

� i) f(z0) = 0 at some point z0 on the boundary. Then, since f(z) 6= 0 in D, jf(z)j > 0 in D

and (by continuity) jf(z)j � 0 on the boundary of D. Since jf(z0)j = 0, jf(z)j does indeed
attain its minimum on the boundary.

� ii)On the other hand, assume that f(z) 6= 0 inD and on the boundary. Then g = g(z) satis�es

the conditions for the maximum modulus principle, so that jg(z)j attains its maximum on the

boundary. But a maximum of jg(z)j is a minimum of jf(z)j. Thus, again, jf(z)j attains its
minimum on the boundary.
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Counterexample 1: Consider f(z) = z on the unit disk jzj < 1, which satis�es the conditions for

the Minimum Modulus Principle, except that f(0) = 0. In this case jf(z)j = 1 on the boundary of

the domain (the unit circle), while the minimum of jf j is clearly 0. Thus, if the condition that

f be non-zero on D fails, the Minimum Modulus Principle need not apply.

Counterexample 2: Consider f(z) = e�z on the right hand side of the complex plane Re(z) > 0,

which satis�es the conditions for the Minimum Modulus Principle, except that the domain is not

bounded. In this case jf(z)j = 1 on the boundary of the domain (the imaginary axis), while the

minimum of jf j is clearly 0 (look at the values of jf(z)j on the positive real axis). Thus, if the

condition that the domain be bounded fails, the Minimum Modulus Principle need not

apply.

1.10 Problem 24 in section 4.6.

Here we show that if P is a polynomial that has no zeros on a simple positively oriented

contour �, then

I =
1

2�i

I
�

P 0(z)

P (z)
dz (1.10.1)

gives the number of zeros (counting multiplicity) that P has inside the contour �.

We can write P (z) = c
nY

k=1

(z � zk), where the zk's are the zeros of P (z) (occurring with their mul-

tiplicities) and c is some constant. Then, using the product rule to di�erentiate P (z), we �nd

dP

dz
= c

nX
`=1

nY
k=1&k 6=`

(z � zk) ;

so that
P 0(z)

P (z)
=

nX
`=1

1

z � z`
:

We recall now that

1

2�i

I
�

1

z � z`
dz =

8><
>:

1 if z` is inside � ;

0 otherwise ;

so that

1

2�i

I
�

P 0(z)

P (z)
dz =

nX
`=1

�
1

2�i

I
�

1

z � z`
dz

�
= No. of zeros of P inside �, counting multiplicities.

THE END.


