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1 Problems from the book by Sa� and Snider.

1.1 Problem 10 in section 4.2.

First notice that the path C is not a smooth curve but consists of four smooth curves (the four

sides of the square). Let us call the four sides C1, . . . , C4, starting with C1 = [0; 1] and proceeding

in counterclockwise order.

According to de�nition 4 in section 4.2 we then have

Z
C
=
Z
C1

+
Z
C2

+
Z
C3

+
Z
C4

;

which reduces the problem to the calculation of integrals over four smooth parts. To compute the

individual integrals, we need to �nd a parameterization for each Ci �rst. A natural choice is given

by

C1 : z1(t) = t ;

C2 : z2(t) = 1 + it ;

C3 : z3(t) = 1 + i� t ;

C4 : z4(t) = i� it ;

where, in all cases: 0 � t � 1. Then, for each side
Z
Ci

�z2dz =
Z

1

0

�zi(t)
2

z
0

i(t)dt; so that

Z
C1

�z2dz =
Z

1

0

t2dt ;

Z
C2

�z2dz =
Z

1

0

(1� it)2idt ;

Z
C3

�z3dz =
Z

1

0

(1� i� t)2(�1)dt ;
Z
C4

�z3dz =
Z

1

0

(1� it)2(�i)dt :

Adding everything up together, we get

Z
C
�z2dz =

Z
1

0

�
t2 + i(1� it)2 � (1� t� i)2 � i(i� it)2

�
dt

=
Z

1

0

(4t+ i(4� 4t)) dt

=
�
2t2 + i(4t� 2t2)

� 1

0

= 2 + 2i :
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1.2 Problem 14b in section 4.2.

On the contour 
, we can write z = R + iy, where 0 � y � 2�. We now look for an upper bound

on jf(z)j for z 2 
. We have the identity:

jf(z)j =
�����
e3R+3it

1 + eR+it

����� =
je3R+3itj
j1 + eR+itj :

Using now the fact that je3itj = 1 and the inequality

j1 + eR+itj � jeR+itj � 1 = eR � 1 > 0 ;

we obtain

jf(z)j = je3R+3itj
j1 + eR+itj �

e3R

eR � 1
for z 2 
 :

We now use this bound and theorem 5 in section 4.2 for the integral of f over 
 to obtain:

����
Z


f(z)dz

���� � e3R

eR � 1
length(
) =

2�e3R

eR � 1
:

1.3 Problem 2 in section 4.3.

Any polynomial P = P (z) can be written in the form

P (z) = a0z
n + a1z

n�1 + : : :+ an ;

where n is a non-negative integer and the ap's are complex numbers. Each of the monomials zp

(0 � p � n) has an antiderivative, namely:
1

p+ 1
zp+1, which is an entire function. Because P is a

linear combination of these monomials, P also has an antiderivative:

Q(z) =
a0

n+ 1
zn+1 +

a1

n
zn + : : :+ anz :

From theorem 7 in section 4.3, every complex function with an antiderivative in a domain has a

vanishing integral over any closed loop within this domain (in this case the domain can be taken as

the whole complex plane).
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1.4 Problem 7 in section 4.3.

Computing the integral directly using a parameterization is quite complicated in this problem.

Instead, we will to show that the function f = f(z) =
1

z � z0
has an antiderivative that is de�ned

on a domain containing C.

The natural candidates are branches of the multiple valued function log(z � z0). This function

has branch points at z = z0 and at z = 1 (nowhere else) which we need to avoid. Since z0 is

outside C, we can always �nd a domain D that contains C but not z0. For example an open disk

with the same center as C and a slightly bigger radius, but not big enough to include z0. Then we

can �nd a branch cut for log(z � z0) (a curve joining z0 with 1) which does not intercept D and

use it to de�ne a branch for the log(z � z0) function, which then is an antiderivative for
1

z � z0
.

Once we �nd such an antiderivative in the domain D, we conclude that the integral of f = f(z)

over any closed contour in D (this obviously includes C as a particular case) is zero.

Remark 1.4.1 We can also start with a branch cut that does not intercept C, and then choose D

to be the complement of this branch cut (i.e. the whole complex plane minus the branch cut).
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2 Other problems.

2.1 Problem 4.1 in 1999.

Statement: Find all the branch points of the following function

f(z) = log(1�pz) (2.1.1)

and choose branch cuts to make it single-valued.

Solution: Let g(z) = 1�pz. Then the possible branch points of the function log(g(z)) are:

� The branch points of g(z), which are z = 0 and z =1.

� The points where g(z) takes as a value a branch point of the log function. That is, the

solutions of the equations: g(z) = 1 and g(z) =1. These yield z = 1 and z =1.

It is not guaranteed that these candidates are indeed the branch points. We must

study the behavior of log(1�pz) near them and check whether they actually are

branch points or not. We do this next.

� Point z = 0. Consider a small circle around z = 0. We start at a point P on this circle and

travel counter-clockwise. Since z = 0 is a branch point of
p
z, the value of

p
z does not return

to its initial value when we return to P, but to its negative.

Because any single-valued branch of the log is a one-to-one function,1 the value of log(1�pz)

will also return to a di�erent value as we return to P. Therefore:

z = 0 is a branch point of f .

To see the \geometry" behind the argument above,2 note that: As z traces a small

circle around zero,
p
z traces one half of a circle around zero. Thus, g = g(z) (as de�ned above)

traces one half of a (small) circle around g = 1. But the logarithm is analytic at one, so for values

of its argument near one we have log(g) = log(1) + (g � 1) + �(g � 1), where j�(g � 1)j is much

1To see this, note that if log(z1) = log(z2) = �, then z1 = z2 = e� .

2It is always useful to do this kind of visualization, as it help in the understanding of how branch points \work".
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smaller than jg � 1j when jg � 1j is small.3 It follows that, as z traces a small circle around

z = 0, f(z) above in (2.1.1) traces (approximately) one half of a small circle around log(1).

Hence z = 0 is a branch point for f .

� Point z =1. Now we use the fact that (for jzj large) log(1�pz) behaves like log(�pz) =

1

2
log(z) + i�, which has a branch point at 1. Therefore:

z =1 is a branch point of f .

� Point z = 1. This one is subtle and the answer will very much depend on which branch of

the square root we are at. Namely:

{ Case
p
1 = �1. Then g(1) = 2 and z = 1 is not a branch point of f in (2.1.1), since

g = g(z) is analytic at z = 1 and log(g) is analytic at g = 2. Thus, the argument that

lead us to pick z = 1 as a possible branch point (right at the beginning of this solution)

does not apply.

{ Case
p
1 = 1. Then g(1) = 0 and we do \hit" a branch point of logarithm. Thus,

consider what happens as a small circular path centered at z = 1 is traced: because

g is analytic at one, g(z) will then (approximately) trace a small circle around g = 0

(the argument here is entirely similar to the one we used above when visualizing the

geometry of the case z = 0). But then log(g) will jump by 2�i (zero is a branch point

for the logarithm). It follows then that in this case z = 1 is a branch point.

We conclude that

For
p
1 = 1 . . . . . . . . . . . . . . . . z = 1 is a branch point of f ,

For
p
1 = �1 . . . . . . . . . . . . . . . . z = 1 is not a branch point of f .

That is, in terms of the \Riemann Surface" (the surface made by \gluing" appropriately all

the branches of f in (2.1.1)), z = 1 is a branch point in some levels an not in others (see

remark 2.1.1 below).

3This is just the de�nition of having a derivative.
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How do we choose the branch cuts? Well, this would depend on which sheet we are in. Ifq
(1) = �1, then a suitable branch cut would be any curve joining z = 0 and z =1. On the other

hand, if
q
(1) = 1, a suitable branch cut would be any curve going from one branch point to the

next to the next (in any order). A few examples in this second case are:

� Use the positive real axis.

� Use the lines de�ned by Im(z) � 0 and Rez = 0 or Rez = 1.

� Use the real axis for Rez � 0 and Rez � 1.

Remark 2.1.1 Concerning the situation with the point z = 1. Recall the analogy made in the

Branch Points Handout (and in the lectures) of the Riemann Surface (for some examples) with

some sort of \car parking building". In this context, notice that the branch points are the points

\organizing" the ramps that allow the cars to change levels (the ramps wind around the branch

points). The fact that z = 1 is a branch point in some places and not in others simply means that:

there are some levels where you can �nd a ramp (taking you to a di�erent level) that goes around

z = 1 and there are other levels where this does not happen. This is not that strange (though it may

cause some confusion to the poor drivers trying to get out of there).

Visualizing the Riemann Surface for the function in (2.1.1) is not easy, because the surface cannot

be constructed as a surface within three dimensional space (this is due to the e�ect of the square

root, that gets back to its starting value after two turns around its branch point . . . very much as in

an Escher picture!). Thus we will not attempt to produce a plot of the whole Riemann Surface here.

Instead we will partition the surface into appropriate Riemann Sheets, which we can then use as Lego

blocks to construct the surface. These are shown in �gures 2.1.1 and 2.1.2.

Figure 2.1.1 shows a sheet of the Riemann Surface where z = 1 is a branch point and �gure 2.1.2

shows a sheet where z = 1 is not a branch point. We can construct the whole surface using these

two pieces as Lego blocks in the following fashion:

� Take in�nite copies of the sheet in �gure 2.1.1 and stack them one on top of the other, joining

the matching lips of the branch cut along the real axis on x � 1. These are marked in the

�gure by the thick lines colored red (lower lip) and blue (upper lip). The matching is blue in

any copy to red in the copy immediately above.
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Figure 2.1.1: Two views of a sheet of the Riemann Surface for (2.1.1) where z = 1 is a branch point.
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Figure 2.1.2: Sheet of the Riemann Surface for (2.1.1) where z = 1 is not a branch point.

� The �rst step leaves us with a surface that is still contained in three dimensional space. How-

ever, we have an in�nite set of gaps on it; in each level there is an opening along the negative

real axis (on x � 0) due to the other branch cut. As a construction company, we would be in
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serious trouble if any car fell o� through one of this gaps.

� If we were constrained to have our parking building within the normal three dimensional space,

we would be in serious trouble trying to get rid of the gaps left in the prior step. But mathe-

maticians have contacts in high places, so we will be allowed to spill our construction into the

fourth dimension (which we do next).

� Take now in�nite copies of the sheet in �gure 2.1.2. Notice that this sheet has only one branch

cut, with its lips marked also by thick lines, colored green (upper lip) and magenta (lower lip)

| same scheme used to color the lips of the x � 0 branch cut in the other �gure. Now we can

close the gaps in our un�nished surface by joining these new Lego blocks along the branch cut

lips (matching colors). We can only pull this last step by moving into higher dimensions, so

that an intersection of the two types of Lego blocks can be avoided.

� That is it, the surface is �nished and ready to be put to use.

2.2 Problem 4.2 in 1999.

Statement: Find all the branch points of the following function

f(z) = log(log(z)) (2.2.1)

and choose branch cuts to make it single-valued.

Solution: Let g(z) = log(z). Then the possible branch points of the function log(g(z)) are:

� The branch points of g(z), which are z = 0 and z =1.

� The points where g(z) takes as a value a branch point of the log function. That is, the

solutions of the equations: g(z) = 0 and g(z) =1. These yield z = 1, z = 0 and z =1.

It is not guaranteed that these candidates are indeed the branch points. We must

study the behavior of f(z) = log(log(z)) near them and check whether they actually

are branch points or not. We do this next.
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� Point z = 0. Consider a small circle around z = 0. We start at a point P on this circle and

travel counter-clockwise. When we return to P the value of g(z) will have increased by 2�i.

Because any single-valued branch of the log is a one-to-one function,4 the value of log(log(z)) =

log(g(z)) will also return to a di�erent value as we return to P. Therefore:

z = 0 is a branch point of f .

� Point z =1. Let w =
1

z
, then:

log(log(z)) = log

�
log

�
1

w

��
= log(� log(w)) = �i + log(log(w)) = �i+ f(w) :

Using now the prior result (z = 0 is a branch point for f(z)) we see that

z =1 is a branch point of f .

� Point z = 1. This one is subtle and the answer will very much depend on which branch of

the logarithm we are at. Namely:

{ Case log(1) = g(1) = 2n�i, with n 6= 0 an integer. Then z = 1 is not a branch point of

f in (2.2.1), since g = g(z) is analytic at z = 1 and log(g) is analytic at g = g(1). Thus,

the argument that lead us to pick z = 1 as a possible branch point does not apply.

{ Case log(1) = g(1) = 0. Then we do \hit" a branch point of logarithm. Thus, consider

what happens as a small circular path centered at z = 1 is traced: because g(z) is

analytic (with a non-zero derivative) at z = 1, g(z) will (approximately) trace a small

circle5 around g = 0. But then log(g) will jump by 2�i (zero is a branch point for the

logarithm). It follows then that in this case z = 1 is a branch point.

We conclude that

For log(1) = 0 . . . . . . . . . . . . . . . z = 1 is a branch point of f ,

For log(1) 6= 0 . . . . . . . . . . . . . . . z = 1 is not a branch point of f .

4To see this, note that if log(z1) = log(z2) = �, then z1 = z2 = e� .
5The argument here is the same that we have used elsewhere: near z = 1 we can write (since g(1) = 0 and

dg

dz
(1) = 1) g(z) = (z � 1) + �(z � 1) ; where �(z � 1) is much smaller than (z � 1) when (z � 1) is small.
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That is, in terms of the \Riemann Surface" (the surface made by \gluing" appropriately all

the branches of f in (2.2.1)), z = 1 is a branch point in some levels an not in others. The

situation is somewhat similar to the one we found while solving the Other Problem 4.2 in

1999. The Riemann surface in the current case, however, is much more of a \nightmare" ...

can you �gure out a clever way to visualize it?

How do we choose the branch cuts? Well, this would depend on which sheet we are in. If

log(1) 6= 0, then a suitable branch cut would be any curve joining z = 0 and z =1. On the other

hand, if log(1) = 0, a suitable branch cut would be any curve going from one branch point to the

next to the next (in any order). A few examples in this second case are:

� Use the positive real axis.

� Use the lines de�ned by Im(z) � 0 and Rez = 0 or Rez = 1.

� Use the real axis for Rez � 0 and Rez � 1.

THE END.


