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1 Problems from the book by Sa� and Snider.

1.1 Problem 04 in section 2.2.

� If jz0j < 1, we have jzn
0
� 0j = jz0jn ! 0 as n!1, hence lim

n!1
zn
0
= 0, by de�nition (clearly,

de�nition 1 | in page 46, section 2.2, of the book | is satis�ed).

� If jz0j > 1, then (given any z 2 C) we have jzn
0
� zj > jz0jn � jzj ! +1 as n!1, thus zn

0

cannot converge to any z 2 C, i.e.: it diverges. Actually, many times the statement that

a sequence f�ng "diverges" is used with the meaning that j�nj ! 1 as n!1, which is a

narrower meaning than simply not converging to any z 2 C. Clearly, this is the case here too.

1.2 Problem 04 in section 2.3.

� a) Assume that f(z) = Re(z) is di�erentiable at a point z0 2 C and write �z = �x + i�y,

where �x 2 R and �y 2 R. Then it should be that

f 0(z0) = lim
�z!0

f(z0 +�z)� f(z0)

�z
=

�x

�x+ i�y
:

However, if we take the path f�x = 0 ; �y ! 0g, this limit is 0. On the other hand, if we

take the path f�y = 0 ; �x! 0g, this limit is 1. This is a contradiction; thus the derivative

cannot exist.

� b) Note that Re(z) = z � iIm(z). Thus, if Im(z) is di�erentiable at some point, it follows that

Re(z) is di�erentiable at the same point (since f(z) = z is di�erentiable everywhere). This

contradicts part (a).

Alternatively, the exact same approach used in part (a) can be used for this part (b).

� c) Using that �z =
jzj2
z

and the fact that g(z) = �z is nowhere di�erentiable (see example 2.3.2

in the book, also shown in the lectures), we can conclude that f(z) = jzj is not di�erentiable
at any point where z 6= 0 (else g would be di�erentiable there). At z = 0:

jz +�zj � jzj
�z

=
j�zj
�z

= e�i� ; where �z = rei� :
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Clearly, this has no limit as �z ! 0. We can also consider directly the de�nition of derivative.

For f(z) = jzj to have a derivative at an arbitrary point z0 2 C, the limit (as �z ! 0) of

W =
jz0 +�zj � jz0j

j�zj
must exist. However, write z0 = rei�, where we can assume that r > 0 (we have already shown

above that W has no limit when z0 = 0). Then (for 0 < � < r) if we take �z = �ei�, we have

W = 1, while �z = ��ei� yields W = �1. Thus, there is no limit.

1.3 Problem 16 in section 2.3.

First note that z3
1
= z3

2
= 1, so that f(z1) = f(z2). Also f

0(z) = 3z2. Thus, if f 0(w) =
f(z2)� f(z1)

z2 � z1
,

it must be w = 0, which is not a point on the line segment from z1 to z2.

1.4 Problem 01 in section 2.4.

� a) For w = f(z) = �z = x� iy, we have u(x; y) = x and v(x; y) = �y. Thus
@u

@x
= 1 and

@v

@y
= �1 :

It follows that the 1st Cauchy{Riemann condition is never satis�ed, so that w = f(z) is not

analytic anywhere. The 2nd Cauchy{Riemann condition is satis�ed, but this is not enough,

both conditions are needed for analyticity.

� b) For w = f(z) = Re(z) = x, we have u(x; y) = x and v(x; y) = 0. Thus

@u

@x
= 1 and

@v

@y
= 0 :

It follows that the 1st Cauchy{Riemann condition is never satis�ed, so that w = f(z) is not

analytic anywhere. The 2nd Cauchy{Riemann condition is satis�ed, but this is not enough,

both conditions are needed for analyticity.

� b) For w = f(z) = 2y � ix, we have u(x; y) = 2y and v(x; y) = �x. Thus
@u

@y
= 2 and

@v

@x
= �1 :

It follows that the 2nd Cauchy{Riemann condition is never satis�ed, so that w = f(z) is not

analytic anywhere. The 1st Cauchy{Riemann condition is satis�ed, but this is not enough,

both conditions are needed for analyticity.
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1.5 Problem 16 in section 2.4.

� a) We have
@x

@�
=

1

2
;

@x

@�
=

1

2
;

@y

@�
=

i

2
and

@y

@�
=
�i
2

:

Thus, using the chain rule, we �nd:

@ ~f

@�
=

@f

@x

@x

@�
+

@f

@y

@y

@�
=

1

2

@f

@x
� i

2

@f

@y
;

@ ~f

@�
=

@f

@x

@x

@�
+

@f

@y

@y

@�
=

1

2

@f

@x
+

i

2

@f

@y
:

Substituting now f = u+ iv, the desired result follows.

� b)
@ ~f

@�
=

1

2
(ux � vy) +

i

2
(uy + vx) | as shown in part (a). Thus, it is quite clear that the

Cauchy{Riemann equations are exactly the same as the condition
@ ~f

@�
= 0 .

1.6 Problem 02 in section 2.5.

Let P (x; y) = ax2 + bxy + cy2. For P to be harmonic, it must satisfy Laplace's equation

0 =
@2P

@x2
+

@2P

@y2
= 2a+ 2c :

Hence P is harmonic if and only if a+ c = 0 (notice that we do not have to worry about conti-

nuity of the partial derivatives, since this is trivially true for polynomials).

1.7 Problem 11 in section 2.5.

We have f(z) = z +
1

z
with z = x+ iy, where x 2 R and y 2 R. Thus

Im(f(z)) = Im(z +
1

z
) = Im(x + iy +

x� iy

x2 + y2
) = y(1� 1

x2 + y2
) :

Thus, the level curve Im(f(z)) = 0 corresponds to the set of points (x; y) in the plane satisfying

either

y = 0 or 1� 1

x2 + y2
= 0 :

That is: the union of the real axis and the unit circle.
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1.8 Problem 18 in section 2.5.

Let f(x; y) = �x � i�y = u+ iv. If � is harmonic, then f satis�es the Cauchy{Riemann conditions

because

ux = �xx = ��yy = vy and uy = �xy = �yx = �vx :

Here the �rst equation follows from the fact that � satis�es Laplace's equation and the second is

just a general property of the second partial derivatives of functions where these derivatives are

continuous.

Since the partial derivatives of u and v are continuous, it follows that f is analytic.

1.9 Problem 13 in section 3.1.

For z = x+ iy (with x and y real), we have

cos(z) = 1

2
(eiz + e�iz)

= 1

2
((ey + e�y) cos(x)� i(ey � e�y) sin(x))

= cosh(y) cos(x)� i sinh(y) sin(x) ;

where we have used the de�nition of the exponential function in the complex plane, which yields:

eiz = e�y(cos(x) + i sin(x)) and e�iz = ey(cos(x)� i sin(x)) .

The equality

sin(z) = cosh(y) sin(x) + i sinh(y) cos(x)

follows in the same fashion.

1.10 Problem 15 in section 3.1.

Using the expression for the cosine function in terms of the exponential, we have

cos(z) = 0 () eiz + e�iz = 0

() e2iz + 1 = 0

() 2z = � + 2k� ; where k 2 Z

() z = 1

2
� + k� ; where k 2 Z:

Here we have used that e� = �1 if and only if � = i(� + 2k�). This follows easily from the expression

for the exponential: e� = ex(cos(y) + i sin(y)) when � = x + iy, with x and y real.
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1.11 Problem 18 in section 3.1.

� a) To prove this part we use the fact that sin(z) is an entire function whose derivative is

cos(z). Thus, taking the derivative at z = 0, we get

lim
z!0

sin(z)

z
= sin0(0) = cos(0) = 1 ;

where we have used that sin(0) = 0.

� b) For this part we use the fact that cos(z) is entire with derivative � sin(z). Thus, taking

the derivative at z = 0, we get

lim
z!0

cos(z)� 1

z
= cos0(0) = � sin(0) = 0 ;

where we have used that cos(0) = 1.

2 Other problems.

2.1 Problem 2.1 in 1999.

Statement: Consider the multiple valued mapping in the complex plane given by:

z �! z�1=3 :

What are the images, under this map, of

1) The half plane: Re(z) > 0?.

2) The quadrant: Re(z) < 0 and Im(z) < 0?

3) The wedge: ��

4
< Arg(z) <

�

4
?

In each case, draw the initial set and the image set and explain your answer.

Solution: When z 6= 0, there are three values for z1=3, all with the same length and with their

arguments (2=3)� apart. Thus the image of any set will consist of three parts: if we call one

of them S0, then the other two can be obtained by rotating S0 by (2=3)� and (4=3)� | note that

a rotation by (4=3)� is equivalent to one by (�2=3)�.
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In the three cases here, the initial sets are all open wedges and we can obtain S0 by \shrinking"

the values of the angles by a factor of (1=3). That is: if the initial set is de�ned by �0 < arg(z) < �1

(where �0 < �1), then S0 is de�ned by
1

3
�0 < arg(z) <

1

3
�1. Thus we have (see the �gures):

1) Image of the half plane: Re(z) > 0. S0, S1 and S2 are de�ned by:

�1

6
� < arg(z) <

1

6
� ;

1

2
� < arg(z) <

5

6
� and � 5

6
� < arg(z) < �1

2
� ;

respectively. See �gure 2.1.1.

 Re(z) > 0

 z = x + iy

 x

 y

 0

 S
0

 S
1

 S
2

 z = x + iy

 Image of: Re(z) > 0.

 x

 y

 0

Figure 2.1.1: Image by z1=3 of the region: Re(z) > 0.

2) Image of the quadrant: Re(z) < 0 and Im(z) < 0. S0, S1 and S2 are de�ned by:

�1

3
� < arg(z) < �1

6
� ;

1

3
� < arg(z) <

1

2
� and � � < arg(z) < �5

6
� ;

respectively. See �gure 2.1.2.

3) Image of the wedge: ��

4
< arg(z) <

�

4
. S0, S1 and S2 are de�ned by:

� 1

12
� < arg(z) <

1

12
� ;

7

12
� < arg(z) <

3

4
� and � 3

4
� < arg(z) < � 7

12
� ;

respectively. See �gure 2.1.3.
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 Re(z) < 0

 Im(z) < 0

 z = x + iy

 x

 y

 0

 S
0

 S
1

 S
2

 z = x + iy

 Image of: Re(z) < 0, Im(z) < 0.

 x

 y

 0

Figure 2.1.2: Image by z1=3 of the region: Re(z) < 0 and Im(z) < 0.

 Region: -0.25 π < Arg(z) < 0.25 π

 z = x + iy

 x

 y

 0

 S
0

 S
1

 S
2

 z = x + iy

 Image of: - π/4 < arg(z) < π/4.

 x

 y

 0

Figure 2.1.3: Image by z1=3 of the region: jarg(z)j < �=4.
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2.2 Problem 2.2 in 1999.

Statement: Consider the sequence generated by Newton's method, when computing
p
1. Starting

from some arbitrary complex number z0, the sequence is given by:

zn+1 =
1

2

�
zn +

1

zn

�
: (2.2.1)

Show that if Re(z0) > 0, then Re(zn) > 0 for all n.

Solution: Write zn = xn + iyn, where xn 2 R and yn 2 R. Then, taking real parts in equation

(2.2.1), we �nd:

xn+1 =
1

2
xn +

1

2

xn

x2
n
+ y2

n

=
1

2
xn

 
1 +

1

x2
n
+ y2

n

!
:

Since 1 +
1

x2
n
+ y2

n

> 0 always, we have that: xn > 0 =) xn+1 > 0. Thus, using induction:

Re(z0) = x0 > 0 =) Re(zn) = xn > 0; for all n = 0; 1; 2 : : : :

One little detail: we have assumed here that x2
n
+ y2

n
> 0. How do we know this? Well, it is certainly

true for n = 0, because x0 > 0 (by assumption). But then x1 > 0 and so x2
1
+ y2

1
> 0, etc. That is:

x2
n
+ y2

n
> 0 is just a part of the induction argument above (none of the zn's vanishes).

2.3 Problem 2.3 in 1999.

Statement: In problem (2.2), assume that z0 is purely imaginary. Then all the zn's are imaginary

and the sequence reduces to:

zn = iyn ; where yn+1 =
1

2
(yn �

1

yn
) (2.3.1)

and the yn's are all real. Show that, for yn = cot(�n), the sequence becomes �n+1 = 2 �n.

Now think of what happens if you take an arbitrary point on the unit circle and you move it by

duplicating its argument each time. What does this tell you about what the iterates by Newton's

method do on the imaginary axis?

Solution: Using the the formula we obtained in the answer to problem (2.2) for the real parts of

the iterates, namely:

xn+1 =
1

2
xn

 
1 +

1

x2
n
+ y2

n

!
;
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we see that if xn = 0, then xn+1 = 0. By induction, we conclude that all the zn are purely imaginary

if z0 is. In this case we can write

zn = i yn = i cot(�n) ;

for some �n (where the yn's satisfy equation (2.3.1)

Note 2.3.1 Notice that �n is not uniquely de�ned by yn: you can always add a multiple of 2� to

a possible value and obtain another acceptable value. So, keep in mind that for each n, there is a

whole bunch of possible �n's. We are just picking (arbitrarily) one of them.

Substituting yn = cot(�n) into (2.3.1), we �nd:

yn+1 =
1

2

 
cot(�n)�

1

cot(�n)

!
=

1

2

 
cos(�n)

sin(�n)
� sin(�n)

cos(�n)

!
=

cos2(�n)� sin2(�n)

sin(�n) cos(�n)
= cot(2�n) :

It follows that 2�n is a possible value for �n+1. So, if we choose a �0 such that y0 = cot(�0), then

(by induction) we have

yn = cot(2n�0) :

Note 2.3.2 Let us investigate what the sequence f�n = 2n�0g1n=0 does in the set of angles. Since

two angles are the same when they di�er by a multiple of 2�, we are only interested in the values

of this sequence modulo multiples of 2� | we write �p = �q (mod 2�) when �p and �p di�er by

a multiple of 2�.

Let us choose �0 of the form �0 = 2�� , where 0 � � < 1 (we can always do this, without

loosing any generality). Then, for n = 0; 1; 2; 3 : : :, de�ne:

In = Integer Part(2n�)

and replace the sequence �n = 2n�0 by the equivalent one given by �n = 2n�0 � 2In�. This we

can do because �n = �n (mod 2�) for every n . The advantage of doing this is that we have:

�n = 2 (2n�� In)� ; where 0 � �n = 2n�� In < 1 ; (note that �0 = �).

Thus, we have \normalized" the sequence and we no longer have to worry about equivalences modulo

multiples of 2�.
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First consider the case when � =
p

q
is a rational number (here p � 0 and q > 0 are inte-

gers). Then

�n = 2n
p

q
� In =

2np� Inq

q
:

Since we also know that 0 � �n < 1, we can conclude that �n can only take values in the �nite set

f0; 1
q
;
2

q
: : :

q � 1

q
g | though some values may be missing. It is then not too hard to see that the

sequence will have to be periodic, with some period T < q (for example, if � =
1

3
, the sequence of

�n's is given by:
1

3
;
2

3
;
1

3
;
2

3
;
1

3
;
2

3
: : : | the period here is: T = 2). Thus, in this case the

sequence of Newton iterates in (2.3.1) will wonder periodically over a �nite set of

points in the imaginary axis, without converging to anything.

By the way, notice that if q above is a power of 2, then sooner or later we have either �n = 0

or �n =
1

2
, which corresponds to the sequence diverging to 1. It is easy to see that this can only

happen in this case. We conclude that the set of initial points along the imaginary axis that

lead to a sequence that \blows up" at some point, is characterized by:

� =
p

2m
; with p � 0 and m � 0 integers.

Notice that this is a dense set.

On the other hand, if � is an irrational number, then it can be shown that the sequence of �n's

never repeats and wonders over an in�nite set of points in the unit interval. The general behavior

of the sequence of �n's is quite complicated and gives an example of chaotic behavior. One way to

see this is to write �0 in binary notation, i.e.:

�0 = 0:abcd : : : (2.3.2)

where the a, b, c . . . are either zeros or ones. Multiplication by 2 in binary notation reduces to

shifting the dot to the right one place. It is then clear that �n is obtained from �0 above in (2.3.2)

by shifting the dot to the right n places and eliminating the digits that end up on the left of the dot.

It turns out that this operation is a well understood one in the theory of Chaos and provides the

simplest example of it.

By the way: the contents of note 2.3.2 is not part of the answer you were expected to supply, of

course! You were only expected to think a bit about what the iterates do, but that is it.
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Remark 2.3.1 The original statement for this problem had an error: it was implied that, if �0 is

irrational, then the sequence of angles generated gets arbitrarily close to any angle. This is actually

not true, as we show next using the binary expansion for �0.

The binary expansion for a rational number has a "tail" that is periodic (i.e.: after a while the

sequence of numbers that makes up the binary expansion falls into a repetitive pattern), while that

of an irrational number is not. Thus, pick an arbitrary irrational number � such that 0 < � < 1 and

consider its binary expansion. Then select �0 as the number whose binary expansion is obtained

from that of � by replacing every digit by a repeated pair. For example:

� = 0:1011010001 : : : =) �0 = 0:11001111001100000011 : : :

It is then clear that both:

� �0 is irrational.

� The sequence of �n's cannot not get arbitrarily close to any number with a string 101 or 010

in its binary expansion. For example, consider r = 0:101. Then, since all the numbers in the

sequence must have one of the forms:

�n = 0:000 : : : or �n = 0:011 : : : or

�n = 0:100 : : : or �n = 0:111 : : : or

�n = 0:000 : : : or �n = 0:001 : : : or

�n = 0:110 : : : or �n = 0:111 : : : ;

it follows that their distance to r will, at best, be no less than 0:001 (in binary notation).

THE END.


