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Transcript Phase Portraits 

PROFESSOR: Welcome to this recitation on the phase portrait. So you're given matrix A, a two-by-two 

matrix with entries minus 1, minus 1, 1 minus c, where c is a constant we will be varying, and minus 1. 

As c increases from 0 to other positive values, determine the path of the system on the trace 

determinant diagram that we saw in previous recitations and draw the phase portraits that corresponds 

to the critical points and the nature of the critical points.  

So here, we're basically talking of a system that would be a two-by-two system where we have 

derivatives of entry xy for vector equals to this matrix, Ac, multiplying the unknown vector xc. So take a 

few minutes and work out through this problem and I'll be right back.  

Welcome back. So I already prepared the trace determined diagram for you. So here as a reminder, this 

is the parabola that determines whether we're going to have repeated eigenvalues or not. Above this 

parabola, we have two complex conjugate eigenvalues. Below this parabola, we have real eigenvalues, 

either of the same signs, positive or negative, or of different signs. And then, we have the borderline 

cases.  

In our case here, we're looking in a matrix A with a trace equals to minus 1 minus 1, So it's minus 2, and 

a determinant that is equal to 2 minus c. So here, we are basically along this dotted line where the trace 

equals to minus 2. So either we're going to have complex values with negative real parts or negative 

eigenvalues. So we're in stable configurations.  

So we're going to be moving at c equal to 0 from a case where-- I'm just going to label this point 1. For 

example, we have the matrix, minus 1, 1, 1, minus 1 with the trace equals to minus 2, and the 

determinant equals to 2. So clearly, we are this point. And we are just going to be increasing the value of 

c and moving along these lines, crossing this first boundary case where we will have either defective or 

not case. And I'll discuss very briefly what we have.  

And then, we have other value where we are basically in this area where we have real eigenvalues, both 

of them negative, so we have stability. And it would basically be in sync. And then we cross this other 

borderline case where the determinant is equal to 0. And here, we have one eigenvalue that is equal to 

0 and one that is negative. And then, we get to do the part of the diagram where the determinant is 

negative, and the trace is negative. And we basically have a saddle structure where we have one 

eigenvalue as negative and another eigenvalue that is positive.  

So let's get through these five cases. And I'll just do more detailed picture illustrating what I just said. So 

just write down a bit more in detail the first case here. So we have the case where the eigenvalues are 

both complex conjugate, and we have their real part being negative. So basically, we have spirals, 

asymptotically stable spirals. And the spirals could be either clockwise or counterclockwise. And one way 

of determining the direction of these spirals is to look at the sign of the velocity vector of the trajectory 

in the face space. So the face space basically diagram here where we have x and y as the axes of this 

space.  



So let's look, for example, at a particular point here that would be velocity vector 1, 0. And this position 

vector 1, 0 would give us a velocity vector of minus 1 and plus 1. So basically, this vector would be 

directed upward, which means that we are in the case where we would have a spiral coming this way 

toward the critical point and basically with the velocity vector here going this way.  

You don't have to actually do all this to figure out which direction of the spiral you should choose. You 

can just look for these cases two-by-two matrices at the entry at the lower left part of your matrix. And 

if the coefficient here is positive, then it will determine the direction of the velocity vector at this point. 

So if it's positive in this case, you would have this counterclockwise direction of rotation of the spiral.  

So now we can move on and do the following cases a bit faster. So the second case, we are in the case 

where we now have two repeated eigenvalues. Both of them are negative. So we can have either a 

complete case. If we had a matrix that was diagonal, we would have basically a star. But that's not the 

case, because if we pick, for example, the value c equals to 1 that puts us on the parabola, we can see 

that the matrix Ac is not diagonal. So we are in a defective case.  

The defective case, if you compute the eigenvalues in eigenvector would give you something that looks 

like that. The first rate of the eigenvector corresponding to your eigenvalues would be in the direction of 

1, 0. We have negative eigenvalues, so it's going to 0. And basically, to determine the direction, you have 

to see that we are also following a transition here on the trace determined diagram. And so basically, we 

will have a spiral that would look like this. What am I doing? Am I doing the same thing?  

And it would basically rotate, as you can see here, in the same direction as the case that we had just 

before. Because we basically have the transition of the structure of the critical point. And the arrows are 

pointing toward the critical point again because our two eigenvalues are basically here at negative, 

which is just a repeated eigenvalue that is negative.  

So now we can move on to a third case where here we move into the wedge area where we have the 

two eigenvalues now being real, and both of them are negative. So for example, we would have two 

eigenvalues that would give us two eigenvectors that are basically, they're rays. The direction of the 

trajectories on these two rays would be toward the critical point, because we have, again, negative 

eigenvalues. And the trajectories then would be following the lambda. So if I, for example, pick lambda 1 

less than lambda 2, then I would have something like this going to 0. And we would have this trajectory 

corresponding to the eigenvalue that is closer to 0. And again, the arrows would be going toward this 

critical point.  

So we can now move on. And if we keep increasing c, we reach now the point 4 where we are in the 

special case, again, a boundary case where the determinant is 0. But the trace is non-zero. If the 

determinant is 0, which is the product of the two eigenvalues, it means that we have one eigenvalue 

that is equal to 0 and another eigenvalue that is actually, in this case, minus 2, so just negative.  

So what happens here? What happens is that we have now the eigenvector that corresponds to the 

eigenvalue equals to 0 is basically just defining a whole line of critical points. So all the points on this line 



that would correspond, so for example, to lambda 0 are all critical points. So we don't need to actually 

draw arrows here. All the points would be critical points.  

And another direction or ray would be determined by the second eigenvalue value, lambda 2. And we 

would have, for example, directions in this way. It would correspond to the direction of V2. So all these 

would be parallel to V2. And we would have the trajectories going toward all the critical points on this 

line. So in this case, we're in a case where we actually don't have one localized critical point like in the 

previous case that we saw. We've actually have a whole line of critical points.  

So let's move one more point down. So here, another value of c, we now are in the lower part of the 

diagram where we now have two eigenvalues that are again real. But now, the determinant is negative. 

Determinant is the product of the two. So basically we know that one is positive and the other one is 

negative.  

So for example here, we would have one positive, the negative eigenvalue value. So we would have the 

positive eigenvalue and the negative eigenvalue here. So here, again, we're just moving in the structure 

of the critical point. So we should have a smooth transition between the diagrams going 1 to 5.  

And so here, what we see is that we actually have the ray that is basically the stable space here that 

would give us the trajectories going to 0. But it's the only region where we have stability. And all the 

trajectories will just then be tangent in minus infinity to the rate V1 corresponding to the negative 

eigenvalue and going towards the direction of the ray with a positive eigenvalue at plus infinity.  

So we would have something like that, that would correspond to a saddle. This would be a palm. This is 

basically a sink or basically a stable node. This would be defective stable node. And here, we just have a 

asymptotically stable spiral.  

So basically here what you could see is by just changing the value of the constant c had moved the 

structure of the critical point of the system from the phase diagrams one to five. And the transitions can 

be seen to be smooth if you had a continuum of values for c. So that ends this recitation. 
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