
Appendix: A Computer-Generated Portrait Gallery 

There are a number of public-domain computer programs which pro­
duce phase portraits for 2 × 2 autonomous systems. One has the option of 
displaying the trajectories with or without the “little" arrows of the vector 
direction field. We first give an example where the direction field is in­
cluded, and then a portrait gallery with only the tractories themselves. In 
the pictures which illustrate these cases, only a few trajectories are shown, 
but these are sufficent to shown the qualitative behavior of the system. 

A much richer understanding of this gallery can be achieved using the 

Vector field: x' = y, y' = −x
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Mathlets Linear Phase Portraits: Cursor Entry and 
Linear Phase Portraits: Matrix Entry. 

Example. (direction field included).� �� � � 
x y

= . y −x 

General solution: x = c1 cos t + c2 sin t, y = −c1 sin t + c2 cos t 
As we saw before, the trajectories are circles. We know the direction 
is clockwise by looking at a single tangent vector. 

The portrait gallery. 
1. A has real eigenvalues with two independent eigenvectors.
 
Let λ1, λ2 be the eigenvalues and v1 and v2 the corresponding eigenvectors.
 
⇒ general solution to (�) is x = c1eλ1tv1 + c2eλ2tv2. 

i) λ1 > λ2 > 0.
 
Unstable nodal source.
 
As t → ∞ the term eλ1tv1 dominates and x → ∞.
 
As t → −∞ the term eλ2tv2 dominates and x → 0.
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ii) λ1 < λ2 < 0.
 
Stable nodal sink (asymptotically stable).
 
(Simply reverse the arrows on case (i).)
 
As t → 0 the term eλ2tv2 dominates and x → ∞.
 
As t → −∞ the term eλ1tv1 dominates and x → ∞.
 

iii) λ1 > 0 > λ2.
 
Saddle, unstable.
 
As t → ∞ the term eλ1tv1 dominates and x → ∞.
 
As t → −∞ the term eλ2tv2 dominates and x → ∞.
 

iv) λ1 = 0 > λ2.
 
Line of critical points.
 
The critical points are not isolated –they lie on the line
 
through 0 with direction v1.
 
x = c1v1 + c2eλ2tv2
 
As t → ∞ x → c1v1 along a line parallel to v2.
 

v) λ1 = 0 < λ2.
 
Line of critical points.
 
(Simply reverse the arrows in case (iv).)
 
The critical points are not isolated –they lie on the line
 
through 0 with direction v1.
 
x = c1v1 + c2eλ2tv2
 
As t → ∞ x → ∞ along a line parallel to v2.
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vi) λ1 = λ2 > 0.
 
Star nodal source (unstable).
 
Let λ = λ1 = λ2. Two independent eigenvectors ⇒ A is a
 

→scalar matrix ⇒ x = eλt−c .
 
That is all trajectories are straight rays.
 
As t → ∞ x → ∞ along a line from 0.
 
As t → −∞ x → 0
 

vii) λ1 = λ2 < 0.
 
Star nodal sink (asymptotically stable).
 
(Simply reverse the arrows in case (vi).)
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viii) λ1 = λ2 = 0.
 
Non-isolated critical points.
 
Every point is a critical point, every trajectory is a point.
 
2. Real defective case (repeated eigenvalue, only one eigenvector). 
Let λ be the eigenvalue and v1 the corresponding eigenvector. Let v2 be a 
generalized eigenvector associated with v1. 

⇒ general solution to (�) is x = eλt(c1v1 + c2(tv1 + v2)). 

y y
i) λ > 0.
 
Defective source node (unstable).
 
As t → ∞ the term tv1 dominates
 
and x → ∞.
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As t → −∞ the term tv1 dominates 
and x → 0. 
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ii) λ < 0. 
Defective sink node 
(asymptotically stable). 
(Simply reverse the arrows in case (i).) 
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iii) λ = 0.
 
Line of critical points.
 
x = c1v1 + c2(tv1 + v2).
 
Trajectories are parallel to v1.
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3. Complext roots (pair of complex conjugate eigenvalues and vectors).
 
Let an eigenvalue be λ = α + β i, with eigenvector v + i w.
 
⇒ x = eαt(c1(cos βt v − sin βt w) + c2(sin βt v + cos βt w)).
 
The sines and cosines in the solution will cause the trajectory to spiral
 
around the critical point.
 

y y
i) Re(λ) > 0 (i.e. α > 0). 
Spiral source (unstable). 
Trajectories can spiral clockwise or 
counterclockwise. 
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As t → ∞, x → ∞.
 
As t → −∞, x → 0.
 

ii) Re(λ) < 0 (i.e. α < 0).
 
Spiral sink
 
(asymptotically stable).
 
(Reverse arrows from case (i).)
 
Trajectories can spiral clockwise or
 x x 
counterclockwise. 
As t → ∞, x → 0. 
As t → −∞, x → ∞. 
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iii) Re(λ) = 0 (i.e. α = 0).
 
Stable center.
 
Trajectories can turn clockwise or
 
counterclockwise.
 
As t → ±∞, x follows an ellipse.
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For the complex case you can find the direction of rotation by checking 
the tangent vector at one point. 
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2 3
Example. A = has eigenvalues 2 ± 3i. ⇒ the critical point is −3 2 
a spiral source. 

1 2
The tangent vector at the point x0 = is A x0 = .

0 −3 
⇒ spiral is clockwise. 
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