
Part I Problems and Solutions 

 
-  

Problem 1: Give the general solution to the DE system xl = 
−2 1 

)
x and also give −1 −4 

its phase-plane picture (i.e its direction field graph together with a few typical solution 
curves). 

Solution: Characteristic equation 2 λ + 6λ + 9 2 = (λ + 3) = 0 → repeated root λ = −3. 

The single eigenvector v and a generalized eigenvector w such that (A − λI)w = v, and  
x

the scalar component functions x 1 
1(t), x2(t) of the general solution x = of the form x2 

x(t) = c veλt t+ λ
1  c2(vt + w)e  

- )
of the given system xl = Ax are as follows: 

 
1

Eigenvector: v = 
-
−1 

)
-  

1
Generalized eigenvector: w = 

0 

)
Thus, x1(t) = (c1 + c2 + c2t)e−3t and x2(t) = (−c1 − c2t)e−3t . 

Problem 2: For each of the following linear systems, carry out the graphing program laid 
out in this session, that is: 

(i) find the eigenvalues of the associated matrix and from this determine the geometric 
type of the critical point at the origin, and its stability; 
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(ii) if the eigenvalues are real, find the associated eigenvectors and sketch the corre­
sponding trajectories, showing the direction of motion for increasing t; then draw 
some nearby trajectories; 

(iii) if the eigenvalues are complex, obtain the direction of motion and the approximate 
shape of the spiral by sketching in a few vectors from the vector field defined by the 
system. 

a) xl = 2x − 3y, yl = x − 2y 

b) xl = 2x, yl = 3x + y 

c) xl = −2x − 2y, yl = −x − 3y 

d) xl = x − 2y, yl = x + y 

e) xl = x + y, yl = −2x − y 

Solution: Let xx(t) = 

eigenvalues λ1, λ2, with corr

-
x(t)

)
throughout, and M be such that xxl(t) = Mx(t). Let M have y(t)

esponding eigenvectors xv1,xv2. The general solution is thus 

xx t (t t) = c λ1 λ2
1xv1e + c2xv2e

-
2 

 
−3 M =

-
3
) -

1
a)  

)
, with eigenvalues ±1 and eigenvectors and 

)
. The system has a

1 −2 1 1

critical point at (0, 0) which is a saddle point.
 

 
1 0

For c1 = 0 and as t → ∞, xx(t) = c2e−t 
-

1

)
→

-
0

)
0

Similarly, for c2 = 0 and t → −∞, xx(t) → 
- )

.
0


Thus the behavior near the saddle point looks like
 

2
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b) 
-

2 0 
) -

1
) -

0M = , with eigenvalues 2, 1 and eigenvectors , 
)

. The system has an un­
3 1 3 1


stable node at (0, 0).
 
As t → −∞ all trajectories go tox0.
 

Thus the behavior near the node looks like 

- )
0 

For t → −∞, c2 et is dominant term, so the solutions are near the y-axis. For t → ∞,

c1

-
1 
) 1 

e2t dominates, so solutions are parallel to 
-

1 
)

.
3 3-

−2 −2 
)

1 2
c) M = , with eigenvalues 

1 
−4, rs 

3
−1 and eigenvecto , . The system has − − 1 −1

an asymptotically unstable node at (0,0). As t 

- ) - )
→ ∞, all trajectories go tox0. The behavior 

near the origin looks like: 

3
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- ) - )
1 

For t → −∞, e−4t 1 
dominates, so solutions are parallel to ; for

t → ∞,
-

2 
) 1 1

e−t dominates, so solutions come in to the origin asymptotic to the line −1
2

with direction vector . 
1

- )
−

=

-
1 

 
−2

d) M  
)

, eigenvalues 1 ± i 
√

2. The system then has an unstable spiral around 
1 1
 

(0,0).
 

Near y = 0, xl ≈ x, so x is increasing where the spiral cuts the positive x-axis. As y 
increases, so does et, so the spiral is outwards from the origin. 

 
-

1 1
e) M = . Eigenvalues are 1, pure imaginary, so the system has a stable center. −2 −1

The 

)
±

curves are ellipses, since dy −2x−y= dx x+y which integrates easily after cross-multiplying 

4
 



Part I Problems and Solutions OCW 18.03SC
 

to 2x2 2+ 2xy + y = c.
 

Direction of motion: For instance, at (1, 0) the vector field is xl = 1,
 
yl = 2, so motion is clockwise.
 −

5
 



MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

