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Transcript Matrix Exponentials 

PROFESSOR: Welcome to this recitation on matrix exponential. So here, we're given matrix A with 

entries 6, 5, 1, 2. And we're asked to compute the matrix exponential, exponential At, and to use it to 

solve the initial value problem u prime of t equals Aut, where here, u are basically vectors with initial 

condition, u of 0 equals 4, 1. So why don't you pause the video, work through the problem? And I'll be 

right back.  

Welcome back. So first, to go ahead and compute the matrix exponential, we need to identify the 

eigenvalues of matrix A and its eigenvectors. So this is a matrix-- I'll just rewrite here-- that we saw 

before. And its eigenvalues are again, solution of 6 minus lambda 5, 1, 2 minus lambda equals to 0, 

which gives us 6, 2 minus lambda minus 5 equals to 0 lambda squared minus 8 lambda. And we have a 

12 minus 5. So you can verify that the eigenvalues would be 1 and 7. Lambda 1 equals to 1. And lambda 

2 equals to 7.  

So now, we need to seek the eigenvectors associated to each one of the eigenvalues. So the idea here is 

to basically move toward a diagonalization of the matrix A. So let's seek the eigenvectors. And here, I'm 

just going to give them to you, and you can verify the calculation. And this calculation was performed in 

a previous recitation.  

So the eigenvectors, V1 associated to the eigenvalue lambda 1 was, for example, 1 minus 1. And the 

other one that we found, again, this is one form of the eigenvector, was 5 and 1. So these are from the 

notes of a previous recitation. So you can verify that these are the two eigenvectors.  

And from this point, then we can rewrite this solution, if you recall. I'm just going to go through the 

steps toward getting to the definition of the exponential matrix. So here, if we didn't know anything 

about the exponential matrix, we would be able to write the solution as C1 exponential t V1 plus C2 

exponential 7t V2, which basically gives us here, if I write it in this form, for example, an exponential t 

minus exponential t and an exponential 5t multiplied by the entry of this vector, an exponential 7t here 

multiplying C1, C2.  

So this is where the idea of the matrix exponential comes from. We're basically introducing the matrix 

phi of t for which we can write u equals phi of t multiplied by this C1, C2 general constant. So phi of t 

would then be equal to this matrix. But what we want is to be able to solve an initial value problem for 

which e of A of 0 applied to our initial conditions would give us back our initial condition. So we're 

seeking for a form for this exponential matrix that would allow us to do this.  

So the way that we define the matrix exponential give us exponential At. Now, I'm going to the proof, 

but we're just going to check it together, multiplied by phi of 0 minus 1. So let's check that if we use this 

form of the matrix exponential, we would have e. We will have that at 0 applied to u0. We have phi 0, 

phi 0 minus 1 applied to u0. This is a matrix with its inverse, which gives us the identity. And so basically, 

this gives us back u of zero.  



I mean you don't need to do that when you're asked to find the matrix exponential. But just to 

remember where it's coming from, you write down your system in matrix form. You identify the matrix 

phi of t. And then you recall why you want the matrix exponential to have this form, basically to be able 

to solve initial value problems for which the value u of t is projected to u of 0 when we take t equals 0 

for the matrix exponential.  

So now let's go back to our problem. So let's compute this matrix exponential. We have phi of t. So now 

from this formula, we know that we need phi of 0. So that give us, basically, exponential of 0, 5, minus 1, 

and 1. We need to find its inverse. So recall that the inverse of a two-by-two matrix is basically just the 

determinant, minus B minus C and reversing the diagonal entries. So we can just apply this to get our phi 

of 0 minus 1. So here, our determinant is basically 1 plus 5, which is 1 over 6. And then the entries are 

simply 1, 1, minus 5, and 1.  

So now, we're just left with the multiplication of two matrices to get our matrix exponential. So our 

matrix exponential would give us this one sixth. And we now have to multiply the entries. So I'm not 

going to rewrite everything. I'm just going to use this space here. So we have exponential t multiplying 1 

plus 5 exponential 7t. Then, we have exponential t dot minus 5 for this entry. 5 exponential t multiplying 

our 7t. Then for the second entry, we basically have minus exponential t1 exponential 7t1 minus 

exponential t minus 5 and exponential 7t1.  

So we're done with the matrix exponential. So now we were asked to solve for the initial value problem 

with initial condition 4 and 1. So how do we go about that? Well, recall that I just reminded you what did 

we want to use this matrix exponential for. And what we wanted it for is to be able to basically project 

an initial condition into a solution u of t, t times later. And we constructed this matrix to be able to 

basically give us this solution by just multiplying the matrix by the initial value vector.  

So basically, to find the solution of this initial value problem, we simply need to multiply this matrix by 

the initial vector that we were given. And I'm just going to write it here to not have to rewrite 

everything. And it was 4 and 1. And this is u of 0. So let me just do a dash here just so that we can do the 

computation. And we would end up with a solution-- I'm going to keep it in matrix form for now.  

So we end up with 4 exponential t minus 5 exponential t, so minus 1 exponential t. And we have a one 

sixth. Here, 5 exponential 7t, so we have 20, plus 5, so 25, exponential 7t. Then for the second entry of 

the vector solution, we have minus exponential here minus 4 that we add to a 5, and here, a 7 

multiplied by 4 that we add to a 1. So we have basically plus 5 exponential 7t. And that basically gives us 

one way of writing this solution.  

And we can split this down, if we will, into two vectors, plus t, minus 1, 1 exponential 7t, 25, 5. And this 

form is as valid. Yes, thank you. So that ends the laborious calculations. But basically, the key point here 

was just to remember where is the matrix exponential coming from, basically, from the eigenvalues and 

eigenvectors of the original matrix present in the system, and where is the definition coming from, why 

do we define it as phi of t phi minus 1 of 0, and how to use it then to give the solution to an initial value 

problem. So that ends this recitation. 
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