General Linear ODE Systems and Independent Solutions

We have studied the homogeneous system of ODE'’s with constant co-
efficients,
X = Ax, M

where A is an n X n matrix of constants (n = 2,3). We described how
to calculate the eigenvalues and corresponding eigenvectors for the matrix
A, and how to use them to find 7 independent solutions to the system (1).

With this concrete experience in solving low-order systems with con-
stant coefficients, what can be said when the coefficients are functions of
the independent variable t? We can still write the linear system in the ma-
trix form (1), but now the matrix entries will be functions of t:

X' = a(t)x+b(t)y ( X )’ _ < a(t) b(t) ) ( x ) ®
yo o= cbx+dt)y y c(t) dt) ) \y )’
or in more abridged notation, valid for n x n linear homogeneous systems,

X = A(t)x. ®3)

Note how the matrix becomes a function of t — we call it a matrix-valued
function of t, since to each value of t the function rule assigns a matrix:

([ a(to) b(to)
to — A(to) = ( c(tg) d(tg) )

In the rest of this chapter we will often not write the variable t explicitly,
but it is always understood that the matrix entries are functions of t.

We will sometimes use n = 2 or 3 in the statements and examples in
order to simplify the exposition, but the definitions, results, and the argu-
ments which prove them are essentially the same for higher values of n.

Definition 1 Solutions x;(t),...,x,(f) to (3) are called linearly dependent
if there are constants c;, not all of which are 0, such that

cix1(t) + ...+ cuxn(t) = 0, for all t. 4)
If there is no such relation, i.e., if
axi(f)+...+enxy(t) = 0 forallt = all ¢; =0, (5)

the solutions are called linearly independent, or simply independent.
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The phrase for all t is often in practice omitted, as being un-
derstood. This can lead to ambiguity. To avoid it, we will
use the symbol = 0 for identically 0, meaning zero for all t;
the symbol # 0 means not identically 0, i.e., there is some
t-value for which it is not zero. For example, (4) would be
written

cix1(t) +...+cuxn(t) = 0.

Theorem1 Ifx,...,x, is a linearly independent set of solutions to the
n x n system x' = A(t)x, then the general solution to the system is

X = X1+ ...+ CnXy. (6)

Such a linearly independent set is called a fundamental set of solutions.

This theorem is the reason for expending so much effort to
find two independent solutions, whenn = 2and A isa
constant matrix. In this chapter, the matrix A is not con-
stant; nevertheless, (6) is still true.

Proof. There are two things to prove:
(a) All vector functions of the form (6) really are solutions to x’ = Ax.

This is the superposition principle for solutions of the system; it’s true
because the system is linear. The matrix notation makes it really easy to
prove. We have

(c1x1+ ...+ cnxy) = axy+...+cnx,
1
= qAx;+...+cAxy, since x; = Ax;;
= A(cexg + ...+ cuXn), by the distributive law.

(b) All solutions to the system are of the form (6).

This is harder to prove and will be the main result of the next note.
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