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General Linear ODE Systems and Independent Solutions 

We have studied the homogeneous system of ODE’s with constant co­
efficients, 

x� = A x , (1) 

where A is an n × n matrix of constants (n = 2, 3). We described how 
to calculate the eigenvalues and corresponding eigenvectors for the matrix 
A, and how to use them to find n independent solutions to the system (1). 

With this concrete experience in solving low-order systems with con­
stant coefficients, what can be said when the coefficients are functions of 
the independent variable t? We can still write the linear system in the ma­
trix form (1), but now the matrix entries will be functions of t: 

x� = a(t)x + b(t)y 
, 

x 
� 
= 

a(t) b(t) 
. 

x 
, (2)y� = c(t)x + d(t)y y c(t) d(t) y 

or in more abridged notation, valid for n × n linear homogeneous systems, 

x� = A(t) x . (3) 

Note how the matrix becomes a function of t — we call it a matrix-valued 
function of t, since to each value of t the function rule assigns a matrix: 

t0 A(t0) = 
a(t0) b(t0) → c(t0) d(t0) 

In the rest of this chapter we will often not write the variable t explicitly, 
but it is always understood that the matrix entries are functions of t. 

We will sometimes use n = 2 or 3 in the statements and examples in 
order to simplify the exposition, but the definitions, results, and the argu­
ments which prove them are essentially the same for higher values of n. 

Definition 1 Solutions x1(t), . . . , xn(t) to (3) are called linearly dependent 
if there are constants ci, not all of which are 0, such that 

c1x1(t) + . . . + cnxn(t) = 0, for all t. (4) 

If there is no such relation, i.e., if 

c1x1(t) + . . . + cnxn(t) = 0 for all t all ci = 0, (5)⇒ 

the solutions are called linearly independent, or simply independent. 
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The phrase for all t is often in practice omitted, as being un­
derstood. This can lead to ambiguity. To avoid it, we will 
use the symbol ≡ 0 for identically 0, meaning zero for all t; 
the symbol �≡ 0 means not identically 0, i.e., there is some 
t-value for which it is not zero. For example, (4) would be 
written 

c1x1(t) + . . . + cnxn(t) ≡ 0 . 

Theorem 1 If x1, . . . , xn is a linearly independent set of solutions to the 
n × n system x� = A(t)x, then the general solution to the system is 

x = c1x1 + . . . + cnxn.	 (6) 

Such a linearly independent set is called a fundamental set of solutions. 
This theorem is the reason for expending so much effort to 
find two independent solutions, when n = 2 and A is a 
constant matrix. In this chapter, the matrix A is not con­
stant; nevertheless, (6) is still true. 

Proof. There are two things to prove: 

(a) All vector functions of the form (6) really are solutions to x� = A x. 

This is the superposition principle for solutions of the system; it’s true 
because the system is linear. The matrix notation makes it really easy to 
prove. We have 

(c1x1 + . . . + cnxn)�	 = c1x1
� + . . . + cnx�n 

= c1 A x1 + . . . + cn A xn, since xi
� = A xi ; 

= A (c1x1 + . . . + cnxn), by the distributive law. 

(b) All solutions to the system are of the form (6).


This is harder to prove and will be the main result of the next note.
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