Structural Stability for Non-linear Systems

In the preceding note we discussed the structural stability of a linear
system. How does it apply to non-linear systems?

Suppose our non-linear system has a critical point at P, and we want to
study its trajectories near P by linearizing the system at P.

This linearization is only an approximation to the original system, so if
it turns out to be a borderline case, i.e., one sensitive to the exact value of
the coefficients, the trajectories near P of the original system can look like any of
the types obtainable by slightly changing the coefficients of the linearization.

It could also look like a combination of types. For instance, if the lin-
earized system had a critical line (i.e., one eigenvalue zero), the original
system could have a sink node on one half of the critical line, and an unsta-
ble saddle on the other half. (This actually occurs.)

In other words, the method of linearization to analyze a non-linear sys-
tem near a critical point doesn’t fail entirely, but we don’t end up with a
definite picture of the non-linear system near P; we only get a list of possi-
bilities. In general one has to rely on computation or more powerful ana-
lytic tools to get a clearer answer. The first thing to try is a computer picture
of the non-linear system, which often will give the answer.
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Example. x' =y—x?, y =—x+?

1.5 -
. —2x 1
Jacobian: J(x,y) = ( 12y > 1
Crititcal points: y — x> =0 = y = x2
—x+y¥*=0= —x+x*=0=x=0, L y

= (0,0) and (1, 1) are the critical points.

J(1,1) = < :f ;)

characteristic equation: A> -3 =0 = A =

+1/3 = linearized system has a saddle.

This is structurally stable = the nonlinear system has a saddle at (1,1).

J(0,0) = _? (1) ): eigenvalues = £i = a linearized center.

This is not structurally stable. The nonlinear system could be any one of a
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center, spiral out or spiral in. Using a computer program it appears that
(0,0) is in fact a center. (This can be proven using more advanced methods.)

We can show the trajectories near (0,0) are not spirals by exploiting the
symmetry of the picture. First note, if (x(¢),y(t) is a solution then so is
(y(—t), x(—t). That is, the trajectory is symmetric in the line x = y. This
implies it can’t be a spiral. Since the only other choice choice is that the
critical point (0,0) is a center, the trajectories must be closed.

The following two examples show that a linearized center might also
be a spiral in or a spiral out in the nonlinear system.

Examplea. x' =y, y' = —x—1°.

Exampleb. x' =y, v = —x+1°.
In both examples the only critical pointis (0,0).

J(0,0) = ( _(1) (1) > = linearized center. This is not structurally stable.

In example a the critical point turns out to be a spiral sink. In example
b it is a spiral source.

Below are computer-generated pictures. Because the y° term causes the
spiral to have a lot of turns we “improved’ the pictures by using the power
1.1 instead.

x =y X =y
y" = -x-sign(y)abs(y)A1.1 Yy~ = -x+sign(y)abs(y)A1.1
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