
Chaos 

We give a very brief introduction to this subject using DE’s as the start­
ing point. The interested reader who wishes to explore this subject further 
will find many good sources on the web. 

1. Discrete Logistic Equation 

The difference equation xn+1 = rxn(1 − xn) (r a constant) is the discrete 
logistic equation. One way it arises is as follows. 

dP 
= aP − bP2 = model of logistic population growth. 

dt 
Euler’s numerical method makes this a discrete system: 

Pn+1 = Pn + (aPn − bP2)h.n 

Rewrite this as Pn+1 = rPn − sPn 
2. 

r
Let Pn = xn � xn+1 = rxn(1 − xn). s 
Since r = 1 + ah we will only consider r > 1 
Given r and x0 iteration gives the sequence 

x0, x1, x2, . . . , xn . . . Figure 1. 

This is easy to implement on a computer: Figure 1 shows an x vs. r dia­
gram. To make it we used the following recipe. 

1. We choose a value of r and a starting point x0 = .5. 

2. We iterate out to x500 in order to eliminate any transient behavior. 

3. We then plot 1000 points (r, xn) for n = 501 to 1500. 

The darker the plotted point the more times that we got that value of x. 

Look for, instance at the value r = 1.5. The only x value plotted is the 
one at x = .333. This says that the iterated sequence x0, x1, . . . goes to a 
limit of .333. The values r = 2 and r = 2.5 behave similarly. 

At around r = 3.1 the diagram bifurcates. That is, it splits into two 
branches. What this means is that the value of xn is cycles back and forth 
between two values. In the case r = 3.1 we get 

x1001 = .5580, x1002 = .7646, x1003 = .5580, . . . 
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We call this a period 2 cycle. 

As r increases from 3.1 we continue to get period 2 cycles until around 
r = 3.5. At this point both branches of the diagram bifurcate and we see 
four values plotted. This means the values of xn are cycling between four 
values. This is called a cycle with period 4 (or a 4-cycle for short). 

This continues as r increases until the next bifurcation point where we 
get cycles of period 8. As r increases further, this period doubling continues 
to cycles of period 16, 32, etc. 

Then around r = 3.57 something new happens: the periodic behavior 
disappears and seemingly random behavior occurs. This is called chaos. 

At around r = 3.83 periodic behavior returns with cycles of period 3. 
As r increases we again see period doubling with cycles of period 6, then 
12, then 24 etc. until this leads to chaos again. 

After the chaotic region there is a value of r where we see period 5­
cycles. This is followed by period doubling, leading to chaos again. Then 
7-cycles followed by period doubling to chaos, etc. 

Figures 2-4. The pitchfork at various resolutions. 

Remarks: 
1. This period doubling to chaos is a phenomenon seen in many systems. 

2. For any value of r there are fixed points and, often points with other 
periods. The computer doesn’t find them because they are not stable. In 
fact, there is a theorem that says if there is a point of period 3 then there are 
points of all orders. 

2. Feigenbaum constant 

If r1 = first bifurcation point, r2 = second etc. then 
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• • • 

lim 
rk − rk−1 = 4.6692 . . . = the Feigenbaum constant. 

k ∞→ rk+1 − rk 

The same value occurs in many ’period doubling’ systems. 

3. The forced Duffing Equation 

Period doubling also happens in mechanical systems. If we apply a 
periodic force to the damped nonlinear spring we get the equation 

mx�� + cx� + kx + βx3 = F0 cos ωt. 
A mass atop a thin metal wire is modeled by this equation with k < 0. 

We look at the forced Duffing equation x�� + x� − x + x3 = F0 cos t and 
the equivalent nonlinear system 

x� = y 

y� = x − x3 − y + F0 cos t. 

If F0 = 0 (unforced) then there are 3 equilibrium points: 
(0, 0) –unstable (saddle); (±1, 0) –stable (spiral sinks). 
These are shown in the pictures at right. 

stable unstable stable 

In a linear spring system the single critical point at the origin is stable 
and the frequency of the periodic response would equal ω (which in this 
case is 1) and doubling the amplitude of the input would simply double 
the amplitude of the output. In the Duffing system, the behavior is very 
different. 

The plots below were made by taking x(0) = 1, x�(0) = 0, running the 
ode solver for t = 0 to 200, and plotting for t = 100 to 200. (We throw away 
t = 0 to 100 as transient.) 

Just like the discrete logistic equation, we see period doubling to chaos. 
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4. Lorenz Strange Attractor 

This example is the Lorenz System. It is a 3 dimensional system 
x� = −sx + sy 

y� = −xz + rx − y 

z� = xy − bz 

where s, r, b are constants. 

The following picture shows the famous ’butterfly’. (The plot should 
be three dimensional, showing x, y and z. In this case we just plotted z 
vs. x.) Like limit cycles or the periodic points in the pitchfork example this 
trajectory has a limiting set. That is. a set of points that are arbitrarily close 
to the trajectory for arbitrarily large t. In this case, it is called a strange 
attractor because it is such a complicated set. 
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