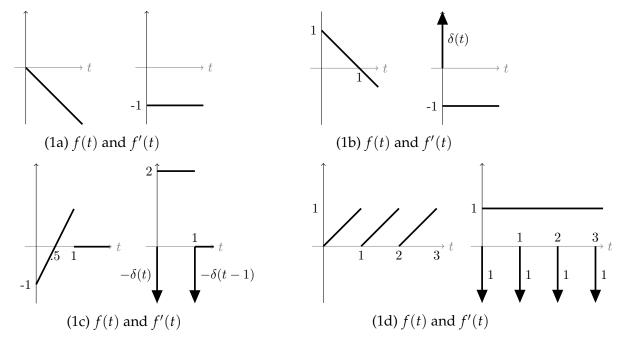
Part II Problems and Solutions

Problem 1: [Step and delta] For each of the following functions f(t), (i) draw a graph, (ii) draw a graph of the generalized derivative, (iii) write a formula for f(t) and for f'(t) (with possibly a few values not defined) using u(t-a), $\delta(t-a)$, and other functions.

(a)
$$f(t) = 0$$
 for $t < 0$, $f(t) = -t$ for $t > 0$.

(b)
$$f(t) = 0$$
 for $t < 0$, $f(t) = 1 - t$ for $t > 0$.

(c)
$$f(t) = 0$$
 for $t < 0$, $f(t) = 2t - 1$ for $0 < t < 1$, $f(t) = 0$ for $t > 1$.


(d) f(t) = 0 for t < 0, $f(t) = t - \lfloor t \rfloor$ for t > 0, where $\lfloor t \rfloor$ denotes the greatest integer less than or equal to t.

Solution: (a) f(t) = -u(t)t, f'(t) = -u(t).

(b)
$$f(t) = u(t)(1-t), \ f'(t) = -u(t) + \delta(t).$$

(c)
$$f(t) = (u(t) - u(t-1))(2t-1)$$
, $f'(t) = 2(u(t) - u(t-1)) - \delta(t) - \delta(t-1)$.

(d)
$$f(t) = (u(t) - u(t-1))t + (u(t-1) - u(t-2))(t-1) + (u(t-1) - u(t-2))(t-2) + \cdots$$

 $= u(t)t - u(t-1) - u(t-2) - \cdots$
 $f'(t) = u(t) - \delta(t-1) - \delta(t-2) - \delta(t-3) \cdots$

Note: In the graphs for (1d) we used that convention that the weight 1 next to the down arrow indicates $-\delta(t)$, $-\delta(t-1)$ etc.

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.