Application to Infinite Series

There is a famous formula found by Euler:
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We’ll show how you can use a Fourier series to get this result.

Consider the period 27 function given by f(t) =t <7'c — ;) on [0,271].
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Figure 1: Graph of f(t).

First, we compute the Fourier series of f(f). Since f is even, the sine
terms are all 0. For the cosine terms it is slightly easier to integrate over
a full period from 0 to 27 rather than doubling the integral over the half-
period. We give the results, but leave the details of the integration by parts
to the reader.

For n = 0 we have
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and for n # 0 we have
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Thus the Fouri iesis f(t) = — —2 .
us the Fourier series is f(t) 3 n;l 3
Since the function f(t) is continuous, the series converges to f(t) for all ¢t.
Plugging in t = 0, we then get
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A little bit of algebra then gives Euler’s result (1).
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