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Compute a Fourier Series 

Exercise. We warm up with a reminder of how one computes the Fourier 
series of a given periodic function using the integral Fourier coefficient for­
mulas. 

Compute the Fourier series for the period 2π continuous sawtooth func­
tion f (t) = |t| for −π ≤ t ≤ π. 

Answer. 
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Figure 1. Graph of the period 2π continuous sawtooth function. 

The period is 2π, so the half-period L = π. Since f (t) = |t| for −π ≤
t ≤ π, it is an even function we know the Fourier sine coefficents bn must 
be zero. 

Computing the cosine coefficients we get: For n = 0: 

1 � π 2 � π 
an = 

π −π 
|t| cos(nt) dt = 

π 0 
t cos(nt) dt 
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For n = 0: 
1 � π 2 � π 

a0 = t dt = t dt = π. 
π −π 

| | 
π 0 

Thus, f (t) has Fourier series 

π 4 cos(3t) cos(5t)
f (t) = cos t + + +
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