IVP’s: Longer Examples

The fish population in a lake is not reproducing fast enough and the
population is decaying exponentially with decay rate k. A program is
started to stock the lake with fish. Three different scenarios are discussed
below.

Example 1. A program is started to stock the lake with fish at a constant
rate of r units of fish/year. Unfortunately, after 1/2 year the funding is cut
and the program ends. Model this situation and solve the resulting DE for
the fish population as a function of time.

Solution. Let x(t) be the fish population and let A = x(07) be the initial
population. Exponential decay means the population is modeled by

x+kx=f(t), x(07)=A (1)
where f(t) is the rate fish are being added to the lake. In this case

f(t) =

r forO<t<1/2
0 forl/2<t.

First, write f in ‘u-format”: f(t) =r(1 —u(t—1/2)).

Next, take the Laplace transform and solve for X(s).

F(s) = L()(s) = 5 — e

= sX—x(07)+kX=F(3) = (s+kX-A= 2(1 _e52)
r

s+k + s(s+k)

To find x(t) we temporarily ignore the factor of e
verse of what’s left. (using partial fractions).

D N 1 r N
L <s+k = Ae ", L SG1R) —k(l e ™).

The t-translation formula says

o (st—/Ii)) — u(t—1/2)

=  X(s) = (1—e5/2).

—5/2 and take Laplace in-

(1 _ e—k(t—l/Z))'

>~
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Putting it all together we get (in # and cases format).
r
k
_ JAeH (1R for0<t<1/2
| Aek— Fle™k + e k(t=1/2))  for1/2 < t.

x(t) — Ae*kt + (1 _ e*kt) _ u(t _ 1/2)£<1 _ efk(tfl/Z))

Example 2.  (Periodic on/off) The program is refunded and the have
enough money to stock at a constant rate of r for the first half of each year.
Find x(t) in this case.

Solution. All that’s changed from example 1 is the input function f(t). We
write it in cases-format and translate that to u-format so we can take the
Laplace transform.

r for0O<t<1/2
0 forl/2<t<1
f(t) = q¢r for0<t<3/2
0 for3/2<t<2

= (1 —ult— ) Fult 1) —ult—2)+..)

The computations from here are essentially the same as in the previous ex-
ample.

L)=L1—e2tes—e 324 )

S
_ A —s/2 -
= X= b g (e et )

= x(t) = Ae ™+ 1 [(1 —e ) —u(t—1/2)(1 — e Kt=1/2)) }
Ae M 41— re=Ht for0 <t <3

Ae Rt — I (gmkt — o=k(t=1/2)) forj <t<1

Ae R 4 b —F(e7ht —o=k(t=1/2) e kt=m)  forn<t<n+1
Ae Rt — Ikt — o kI=1/2) | e=k(t=n=1/2)y  forp 41 <t <n+1
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Factoring out e ¥ gives:

X(t) = Ae M 47— Ze (1 —ek/2 4ok — /24 [ 4 ek) forn<t<n+1/2
| Ae K - ekt (1 —ok/2 ok L ek(n41/2)) forn+1/2<t<n+1.

Note that the constant term r/k is only present during periods of stocking.

Example 3. (Impulse train) The answer to the previous example is a little
hard to read. We know from experience that impulsive input usually leads
to simpler output. In this scenario suppose that once a year r/2 units of
fish are dumped all at once into the lake. Find x(#) in this case.

Solution. Once again, all that’s changed from example 1 is the input func-
tion f(t). The IVP is still given by equation (1).
f(t) = %(50) FO(t—1)+0(t—2)+5(t—3) +...).
This is called an impulse train. Its Laplace transform is easy to find.
F(s) = % (1+eS+e > e > +..).

One nice thing about delta functions is that they don’t introduce any new
terms into the partial fractions part of the problem.

sX(s) — x(07) +kX(s) = %(1+e*5+e*25+e*35+...).
A r —s —2s —3s
= X(s) = s+k+2(s+k)(1+e +e F+e 4.

Laplace inverse is easy:

£ (sik) st o= <se_+k> =t —me

x(t) = Ae*kt_{_%efkt_’_gu(t_l)efk(tfl)_i_%u(t_z)e*k(th)+%u(t_3)efk(tf3)_’_‘”

Thus,

Here are graphs of the solutions to examples 2 and 3 (with A = 0,k =1,
r = 2). Notice how they settle down to periodic behavior.
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Fig. 1. Graphs from example 2 (left) and example 3 (right).
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