Orthogonality Relations

We now explain the basic reason why the remarkable Fourier coefficent
formulas work. We begin by repeating them from the last note:

ao = i/_LLf(t) at,
iy — % /'LL F(t)cos(n ), (1)
by = % / LL F(0)sin(n 1) dt.

The key fact is the following collection of integral formulas for sines and
cosines, which go by the name of orthogonality relations:

1 n=m 75 0
b [ cos(nft)cos(mit)dt =3 0 nm

2 n=—m= O
1 JL, cos(nFt) sin(mFt)dt =0

1 = 0
b JL sin(nEt) sin(mp) dt = { 0 nim #

Proof of the orthogonality relations: This is just a straightforward calcu-
lation using the periodicity of sine and cosine and either (or both) of these
two methods: o _ _

Method 1: use cosat = emzﬂ, and sinat = emr’szmf

Method 2: use the trig identity cos(«)cos(B) = 3(cos(a + B) + cos(a — B)),
and the similar trig identies for cos(a) sin(B) and sin(a) sin(p).

Using the orthogonality relations to prove the Fourier coefficient formula
Suppose we know that a periodic function f(t) has a Fourier series expan-
sion .

f(t) = 61270 + n;lan cos (n%t) + b, sin (n%t) ()

How can we find the values of the coefficients? Let’s choose one coefficient,
say az, and compute it; you will easily how to generalize this to any other
coefficient. The claim is that the right-hand side of the Fourier coefficient
formula (1), namely the integral

IlJ/LLf(t) cos <2%t> dt.
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is in fact the coefficent a, in the series (2). We can replace f(t) in this integral
by the series in (2) and multiply through by cos (2%1‘), to get

i / —t) + Z <an cos (n%t) cos (2%t> + b, sin <n%t> cos (Z%t» dt

Now the orthogonality relations tell us that almost every term in this sum
will integrate to 0. In fact, the only non-zero term is the n = 2 cosine term

i/LL a» cos (2%1?) cos (2%1?) dt

and the orthogonality relations for the case n = m = 2 show this integral is
equal to a; as claimed.

Why the denominator of 2 in EO ?

Answer: it is in fact just a convention, but the one which allows us to have
the same Fourier coefficent formula for a,, when n = 0 and n > 1. (Notice
that in the n = m case for cosine, there is a factor of 2 only for n = m = 0.)

. a
Interpretation of the constant term EO'
We can also interpret the constant term % in the Fourier series of f(t) as the

average of the function f(t) over one full period: £ = 5 [ _LL f(t)dt
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