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Fourier Series: Introduction
 

Solution suggestions
 

This problem session is intended as preparation for working with Fourier series.
 

1. What is the general solution to ẍ + ωn 
2 x = 0? Try to remember it rather than deriving 

it again. 

This is an important system for us, and the goal is to get to the point of being able 
to recognize any homogeneous equation of this form and to remember that it has 
the general solution 

x(t) = c1 cos(ωnt) + c2 sin(ωnt), 

or, equivalently, 

x(t) = A cos(ωnt − φ). 

In our previous terminology, this is the second order linear homogeneous differ­
ential equation modeling a simple (undamped) harmonic oscillator with natural 
frequency ωn. It has purely sinusoidal homogeneous response, with amplitude 
and phase shift that are determined by the inital conditions. 

2. Verify that (as long as ω  = ±ωn) 

cos(ωt) 2xp = a is a solution to ẍ + ωnx = a cos(ωt),2 − ω2ωn 

and that 
sin(ωt) 2yp = b is a solution to ÿ + ω y = b sin(ωt).nωn 

2 − ω2 

The point here is that 

d2 d   
(cos(ωt)) = − ω sin(ωt) = −ω2 cos(ωt)

dt2 dt 

and 
d2

2 
2 (sin(ωt)) = −ω sin(ωt).

dt 
We can verify that xp satisfies the first equation by plugging it in:   

d2 a a 
ẍ  p + ωn 

2 xp = cos(ωt) + ω2 · cos(ωt)n2 2 2dt2 ω2 − ω − ωn ωn 

a aω2 −aω2 + aω2 n n 
= · (−ω ) · cos(ωt) + cos(ωt) = cos(ωt)2 2 ω2 ω2ω − ω ω2 − ω2 −n n n 

= a cos(ωt).
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Similarly, we can see that yp satisfies the second equation: 

2 b bωn 
2 

ÿ  p + ωnyp = · (−ω2) · sin(ωt) + sin(ωt) = b sin(ωt). 
ω2 − ω2 ω2 − ω2 

n n 

That is, as in Problem 1, we are again relying on the simple, but important, obser­
vation that both sine and cosine are proportional to their second derivatives. 

Remark what is happening: Here we are driving a simple harmonic oscillator by 
purely sinusoidal inputs, which themselves satisfy harmonic oscillator equations. 
If we do this at input frequencies ω away from the natural frequency ωn, as we do 
here, the output will also be sinusoidal, with no phase lag, scaled by the gain of the 
system, 1 

2 .ωn
2 −ω 

The case of driving at the natural frequency (driving in resonance) is examined in 
the next problem. 

3. What about ẍ + ωn
2 x = cos(ωnt)? What is a particular solution? What is the general 

6solution? Are there any solutions x(t) such that |x(t)| < 10 for all t? Are there any 
periodic solutions? 

When ω = ωn, we cannot use the solutions suggested in Problem 2. So we proceed 
as usual and solve from the beginning. 

Take a complex replacement and solve the complex-valued equation z̈ + ωn
2 z = 

eiωnt. Here p(iωn) = 0, so the standard ERF does not apply. The first derivative 
p'(iωn) = 2iωn = 0, so the (first-order) Resonant ERF does apply, giving us a 
particular solution to the complex equation, 

teiωnt 
zp (t) = .

2iωn 

t sin(ωnt)Therefore, xp (t) = Re(zp(t)) = is a particular solution to the original 2ωn 

equation. 

Combining this with the homogeneous solution we found in Problem 1, we get that 
the general solution is 

t sin(ωnt)
x(t) = + c1 cos(ωnt) + c2 sin(ωnt).

2ωn 

The next part of this question is asking about the existence of bounded solutions. 
Every homogeneous component here is bounded, while the particular solution we 
found, xp, has a factor of t in its numerator (is oscillating-linear). So any solution 
x (t) oscillates through unboundedly increasing values of x as t increases, and will 
eventually leave any bounding range, including (−106, 106), for some sufficiently 
large values of t. That is, there are no solutions x(t) such that |x (t)| < 106 for all t. 

The last part of this question asks whether there are any periodic solutions. Every 
homogeneous component here is a periodic function with period 2π/ωn, but the 

t sin(ωnt)particular solution we found, xp (t) = , is not periodic. So the general 2ωn 

solution x(t) = xp (t) + c1 cos(ωnt) + c2 sin(ωnt) is not periodic for any c1, c2. 

2
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That is, a differential equation that models driving a harmonic oscillator in reso­
nance has no periodic solution. Instead, all solutions oscillate with unboundedly 
increasing amplitude. 

Note: We have been implicitly assuming that the natural frequency ωn is nonzero. 
If ωn were zero, our equation would have the form ẍ = 0, which is again a situation 
of resonance. This is a separable equation. By integrating twice, we see that it has 
the general solution x = c1t + c2. So here also there are no periodic (nonconstant) 
solutions, but in this case there are no oscillating solutions either. 

4. On the same set of axes, sketch the graphs of sin t and sin(2t). Then sketch the graph of 
f (t) = sin t + sin(2t).
 

Some pointers: f (t) is easy to evaluate when one of the terms is zero. What is the derivative
 
at points where both terms are zero? This information should be enough to let you make a
 
rough sketch.
 

What are the periods of these three functions?
 

The function sin t has period 2π, and the function sin(2t) has period π.
 

Both sin t and sin (2t) vanish at t = kπ for k ∈ Z. f ' (t) = cos t + 2 cos (2t), so at
 k 
1, k odd,

those points, f ' (kπ) = (−1)k + 2 = 
3, k even. 

The function f (t) is a linear combination of sin t and sin (2t), so its period is the 
least common multiple of the periods of sin t and sin (2t) – i.e., 2π. 

Using this information, sketch the two functions and their sum. You can check 
your work against the computer-generated graphs in the figure below. 

The graph of sin t and sin(2t) over a domain of two common periods, followed by 
a graph of their sum f (t). 

5. For what values of ωn is there a periodic solution to the equation 

ẍ + ωn
2 x = b1 sin t + b2 sin(2t) 

(where b1 and b2 are nonzero)? Name one if it exists. 

Use linearity and our previous work to solve.
 

By linearity, a solution to this equation can be expressed as the sum of a solution to
 
ẍ + ωn

2 x = b1 sin t and a solution to ẍ + ωn 
2 x = b2 sin(2t).
 

3 
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If ωn is not 1 or 2, we know from Problem 2 that each of these two equations have 
periodic particular solutions, and their sum 

b1 sin t b2 sin(2t)
x = +p 

ω2 − 1 ω2 − 4n n 

is also periodic, of period 2π. 

Now, if ωn is either 1 or 2, one of the input frequencies is in resonance with the 
natural frequency of our system, and, by linearity, any solution to this differential 
equation will have a non-periodic summand – a sinusoid multiplied factor of t, as 
determined in Problem 3. In this case there are no periodic solutions. 

Thus there is always a periodic solution unless ωn = 1 or ωn = 2. 
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