
18.03SC Practice Problems 26


Convolution


Solution suggestions


Convolution product: The convolution product of two functions f (t) and g(t) 
is � t+ 

( f ∗ g)(t) = f (t − τ)g(τ) dτ. 
0− 

This is also a function. We define it only for t > 0. 

Assertion: Suppose that w(t) is the unit impulse response for the operator 
p(D). Let q(t) be a (perhaps generalized) function. Then the solution to 
p(D)x = q(t) with rest initial conditions is given on t > 0 by w(t) ∗ q(t). 

1. (a) Compute t ∗ 1. More generally, compute (q ∗ 1)(t) in terms of q = q(t). 

Proceed from the definitions. 

t ∗ 1 = 
� t+

(t − τ) 1dτ = 
� t 

(t − τ)dτ = tτ − 
τ2 ���t 

= 
t2

. 
0−

· 
0 2 τ=0 2 

(Here the function we are integrating is continuous at the endpoints of the interval 
of integration, so we do not need to be careful to write signs on the integral limits.) 

In general, � t+ 

q(t) ∗ 1 = q(t − τ)dτ. 
0− 

So 1 is not a unit for the convolution operation. 

(b) Compute 1 ∗ t. More generally, compute (1 ∗ q)(t) in terms of q = q(t). 

Again, proceed from the definitions. 

1 ∗ t = 
� t+ 

1 τdτ = 
� t 

τdτ = 
τ2 ��� t = 

t2
. 

0−
· 

0 2 τ=0 2 

More generally, � t+ � t+ 

(1 ∗ q)(t) = 1 q(τ)dτ = q(τ)dτ 
0−

· 
0− 

With the change of variables t − τ τ� we see that → 

� t+ � τ� =0− � t+ 

(1 ∗ q)(t) = q(τ)dτ = q(t − τ�)(−dτ�) = q(t − τ�)dτ� = (q ∗ 1)(t). 
0− τ�=t+ 0− 

(Note that here we did have to be careful about keeping track of the signs on the 
integral limits.) 



18.03SC Practice Problems 26 OCW 18.03SC


What we have found here is that t ∗ 1 = 1 ∗ t and q ∗ 1 = 1 ∗ q. 

In fact, the convolution operation “∗” is commutative: it can be checked that for 
any f (t) and g(t), ( f ∗ g)(t) = (g ∗ f )(t). 

2. What is the differential operator p(D) whose unit impulse response is the unit step 
function u = u(t)? In 1(b) you computed 1 ∗ q = u ∗ q. Is the Assertion in the box in the 
beginning of this Session true in this case? 

We are looking for the differential operator P(D) such that P(D)u = δ. But we 
know that δ = Du, so the differential operator we are looking for is just p(D) = D. 

The Assertion in this case reads that the solution of Dx = q(t) with rest initial � t+ 

conditions is given on t > 0 by x(t) = (u ∗ q)(t) = (1 ∗ q)(t) = 0− q(τ)dτ. (Note 
that convolving with 1 is the same as convolving with u = u(t).) 

To check the Assertion we need to show that the derivative of this function over 
t > 0 is ẋ(t) = q(t). This is a familiar statement when q is a regular function, 
but we should be more careful to check that it also holds for generalized inputs. 
So break up q(t) into the sum of its regular part and its singular part, which is a 
sum of delta functions. By linearity, it is sufficient to verify the statement for each 
separately. The statement holds for regular q(t) by the fundamental theorem of � t+ 

calculus. It holds for each q(t) = δa(t) with a > 0, since 0− δa(τ)dτ on t > 0 is 
ua(t) whose derivative is δa(t) = q(t). It also holds for q = δ0 = δ, but that case 
falls outside the domain over which we are checking the derivative. 

Note that to show this we finally had to use the signs on the limits of integration 
that we had been carefully keeping track of thus far. 

3. (a) Assume that f (t) is continuous at t = a. What meaning should we give to the 
product f (t)δ(t − a)? 

This is an important property of the delta function that repeatedly comes up in 
computation. 

Suppose that d(t) is a function representing δ(t) - i.e., it is nonzero only very near 
t = 0 and has integral 1. Then f (t)d(t − a) is also nonzero only very near t = a 
and has integral equal to the value of f (t) near a, which, since f (t) is continuous 
at a, is just f (a). Thus f (t)d(t − a) is a function representing both f (t)δ(t − a) and 
f (a)δ(t − a), and so this product is really a delta function scaled by a constant: 

f (t)δ(t − a) = f (a)δ(t − a). 

That is, multiplying the continuous function f (t) by δ(t − a) effectively picks out 
the value of the function f at t = a. 

(b) Assume that f (t) is continuous and f (t) vanishes for t < 0. Let a be a positive con­
stant. Explain why f (t) ∗ δ(t − a) = f (t − a) on t > 0. 

With a = 0, this shows that δ(t) serves as a “unit” for the convolution product. 

From the definition of convolution, � t+ 

f (t) ∗ δ(t − a) = f (t − τ)δ(τ − a)dτ. 
0− 

2 
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As we just saw in part (a), the product f (t − τ)δ(τ − a) = f (t − a)δ(τ − a), so the 
integral becomes 

� t+ � t+ � t+ 

f (t − τ)δ(τ − a)dτ = f (t − a)δ(τ − a)dτ = f (t − a) δ(τ − a)dτ. 
0− 0− 0− 

For t ≥ a, the integral in this expression is just 1, and for 0 < t < a, this integral is 
zero. So, under our assumption that f (t) is continous and vanishes for t < 0, the 
value of the entire expression over t > 0 is the same as f (t − a). 

4. (a) Verify that ω
1 

n 
sin(ωnt)u(t) is the unit impulse response of D2 + ωn 

2 I. 

Denote x(t) := ω
1 

n 
sin(ωnt)u(t). Check that x(t) is a homogeneous solution which 

has x(t) = 0 for t < 0 and satisfies the required initial conditions to be the unit 
impulse response of this operator. 

Differentiate to obtain Dx = cos(ωnt) and D2x = −ωn sin(ωnt) (for t > 0). So 
(D2 + ωn 

2 I)x = 0 when t > 0. 

Moreover, we can check that x satisfies the required initial conditions in this case: 
x(0+) = 0 and ẋ(0+) = 1 = 1/1, where 1 is the coefficient of the leading term D2 

in this differential operator. 

Together this verifies that ω
1 

n 
sin(ωnt)u(t) is the unit impulse response of D2 + ωn 

2 I. 

(b) Find the solution to ẍ + x = sin t with initial conditions x(0) = ẋ(0) = 0, using the 
ERF/resonance. 

We will need to find the general solution to this equation and use the initial condi­
tions to solve for the right constants (i.e. to find the particular solution that satisfies 
these initial conditions). 

As usual, begin by finding a particular solution. The complex replacement of this 
equation is z̈ + z = eit (and x = Im z). By the Resonant ERF, the complex equa­
tion has the particular solution zp = te

2i
it 

. So the original equation has a particular 
solution xp = Im (zp) = − 2 

t cos t. 

Then read off the homogeneous solutions from the system. This system has char­
acteristic polynomial r2 + 1 with roots ±i, so the homogeneous solutions to this 
system are of the form c1 cos t + c2 sin t. 

So by linearity, the general solution to this equation is 

t 
x = − cos t + c1 cos t + c2 sin t.

2 

Now we want x(0) = c1 = 0 and ẋ(0) = − 2
1 + c2 = 0. So we must have c1 = 0 and 

c2 = 2
1 , and the particular solution we are looking for is 

t 1 
x = − cos t + sin t.

2 2 

(c) By the Assertion, sin t ∗ sin t should match the solution found in (b) for t > 0. Verify 
this by computing sin t ∗ sin t directly. (Hint: sin(t − τ) = sin t cos τ − cos t sin τ.) 

3
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From the definitions, sin t ∗ sin t is � t+ � t 
sin(t − τ) sin τdτ = sin t cos τ sin τ − cos t sin2 τdτ 

0− � 
0 

t � 
sin(2τ) 

� � 
cos(2τ) − 1 

� 

= sin t + cos t dτ, 
0 2 2 

for t > 0. Integrate this out to get 

1 τ=t 
4 
[sin t(− cos(2τ)) + cos t(sin(2τ) − 2τ)]|τ=0 

1 
= (− sin t cos(2t) + cos t sin(2t) − 2t cos t + sin t)

4 
1 

= (sin(2t − t) − 2t cos t + sin t)
4 
1 

= (−2t cos t + 2 sin t)
4 

t 1 
= − cos t + sin t,

2 2 

for t > 0, which, over t > 0, matches the solution x(t) we found in (b). 

4
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