Part I Problems and Solutions

Problem 1:

Find the solution satisfying the initial conditions:

$$y'' - y = x^2$$
, $y(0) = 0$, $y'(0) = -1$

Solution: $y_h = c_1 e^x + c_2 e^{-x}$.

Try:

$$y_p = a_1 x^2 + a_2 x + a_3$$

$$y_p'' = 2a_1$$

$$x^2 = -a_1 x^2 - a_2 x + 2a_1 - a_3$$

Thus $a_1 = -1$, $a_2 = 0$, $a_3 = -2$. So

$$y = c_1 e^x + c_2 e^{-x} - x^2 - 2$$

y(0) = 0 gives us $c_1 + c_2 - 2 = 0$; y'(0) = -1 gives us $c_1 - c_2 = -1$, so $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{2}$. Thus,

$$y = \frac{1}{2}e^x + \frac{3}{2}e^{-x} - x^2 - 2$$

Problem 2: Find a particular solution to the DE

$$y'' - y' - 2y = 3x + 4$$

Solution: $y_p = Ax + B \to 0 - A - 2(Ax + B) = 3x + 4 \to A = -\frac{3}{2}$, $B = -\frac{5}{4}$, so $y_p = -\frac{1}{4}(6x + 5)$

Problem 3: Find a particular solution to the DE

$$y^{(3)} + 4y' = 3x - 1$$

Solution: Since y' = 0 for y = constant, try

$$y_p = Ax^2 + Bx = x(Ax + B)$$

$$y'_p = 2Ax + B$$

$$y''_p = 2A$$

$$y'''_p = 0$$

Thus,
$$y_p''' + 4y_p' = 4(2Ax + B) = 3x - 1 \rightarrow 8A = 3, 4B = -1$$
, so $A = \frac{3}{8}$ and $B = -\frac{1}{4}$. Thus, $y_p = \frac{1}{8} \left(3x^2 - 2x \right)$

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.