
p(D) Notation 

We start by recalling the basic results we have developed so far. We are 
studying solutions x = x(t) of the linear constant coefficient DE 

anx(n) + an−1x(n−1) + ... + a1x� + a0 x = q(t) (I) 

with characteristic polynomial 

p(s) = ansn + an−1sn−1 + ... + a1s + a0 (P) 

and homogeneous case (q = 0) 

anx(n) + an−1x(n−1) + ... + a1x� + a0 x = 0 (H) 

Notice that the left-hand sides of (I) and (H) have the same form. For 
this reason it will be useful to have a more compact notation. This is in 
fact provided by an important mathematical tool called operators. We will 
study these in more detail in the session on linear operators. For now, we 
just note that we can write D = dt 

d for the operation of differentiation ap­
dx plied to functions of t, i.e. if x = x(t), then Dx = dt , the first derivative of x. 

In the same way we can write D2 = dt
d2

2 for differentiation twice, i.e. D2x = 
d
dt

2

2 
x , the second derivative of x = x(t); similarly D3 = dt

d3

3 for differentia­
tion three times, and so on. Then if p(s) = ansn + an−1 + sn−1 + ... + a1s + a0 
is any polynomial, we can write 

p(D) = anDn + an−1Dn−1 + ... + a1D + a0. 

The DE’s (I) and (H) then become the statements 

p(D)x = q (I) 
p(D)x = 0 (H) 

respectively – an efficient way to write the DE’s indeed! 

Now let’s recall the basics, but with our new operator notation. For the 
homogeneous case we have the following key theorem. 

Transience theorem. All solutions x = x(t) to the linear homogeneous 
constant coefficient DE 

p(D)x = 0 (H) 
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decay to zero as t ∞ exactly when all roots r of the characteristic poly­→
nomial p(s) have negative real part. 

In this case the solutions to (H) are called transients. By superposition, 
all solutions to (I) then converge to the same solution as t gets large, and we 
say that the DE is stable. 

If we have a system modeled by a stable equation, but we are only in­
terested in what it looks like after the transients have died down, we can 
ignore the initial condition: 

input signal
System

output signal xp

steady state

So in this case we are looking for particular solutions xp. If the input signal 
is sinusoidal, then we know from the results we obtained in the last session 
that there will be a particular solution which is also sinusoidal. This is the 
unique steady state solution which is periodic and it is of particular impor­
tance in many applications. Let’s review how it goes and then introduce 
some useful definitions and terminology that apply to these solutions. 

The starting point is the Exponential Response Formula (ERF), which 
in the operator notation reads 

p(D)x = Beat 

and has a solution 
Beat 

xp = 
p(a) 

provided p(a) �= 0. 

As we saw in the last session, the ERF and complex replacement can be 
used to obtain the periodic solution xp to the DE with sinusoidal input, i.e. 

p(D)x = B cos(ωt). 

This is done as follows. Since B cos(ωt) = B Re(eiωt) we look at the com­
plex equation 

p(D)z = Beiωt , so x = Re(z). 

The exponential response formula gives 

B 
� 

eiωt � 

zp = 
p(iω) 

eiωt ⇒ xp = B Re 
p(iω) 

2 
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Thus,

B 

xp = 
p(iω)

cos(ωt − φ), | | 
where φ = Arg(p(iω)). The solution xp is the particular steady-state peri­
odic solution. 

Let’se examine the relation between the periodic input q(t) = B cos(ωt) 
B

and its periodic output xp(t) = |p(iω)
cos(ωt − φ). We see that the am­| 

B
plitude of the input B is scaled and becomes the amplitude of the |p(iω)|
output. We also see that the output sinusoid xp(t) is shifted by an angle 
φ = Arg(p(iω)) relative to the input sinusoid q(t). 

This motivates the following definitions: for a CC linear DE 

P(D)x = q(t) with sinusoidal input q(t). 

Definition: 
1. The gain is defined to be the the ratio of the amplitude of the output sinusoid

to the amplitude of the input sinusoid.

2.The phase lag is defined to be the angle by which the output sinusoid is

shifted relative to the input sinusoid.


In the special case q(t) = B cos ωt which we solved above, we have that 
the gain g and the phase lag φ are 

1 
g = , φ = Arg(p(iω)). |p(iω)| 

When solving using p(D)x = B cos ωt by complex replacement and the 
ERF we have xp = Re(zp) where zp(t) is the complex solution to p(D)zp = 
Beiwt. That is 

B iωtzp = e . 
p(iω) 

1
For this reason, we define the complex gain in this case as . 

p(iω) 

Note that the gain and the phase lag depend only on the frequency of 
the ω of the input signal (as well as on the system p(D) of course). 
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