
Mechanical Vibration System: Driving Through the Dashpot 

Now suppose instead that we fix the top of the spring and drive the 
system by moving the bottom of the dashpot instead. 

Suppose that the position of the bottom of the dashpot is given by y(t) 
and the position of the mass is given by x(t), arranged so that x = 0 when 
the spring is relaxed. Then the force on the mass is given by 

.. d 
mx = −kx + b (y − x)

dt 

since the force exerted by a dashpot is supposed to be proportional to the 
speed of the piston moving through it. This can be rewritten as 

.. . . 
mx + bx + kx = by . (1) 
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Figure 2. Dashpot-driven system 

We will consider x as the system response, and again on physical grounds 
we specify as the input signal the position y of the back end of the dashpot. 
Note that the derivative of the input signal (multiplied by b) occurs on the 
right hand side of the equation. 

Again we suppose that the input signal is of sinusoidal form 

y = B1 cos(ωt). 

We will now work out the frequency response analysis of this problem. 
.

First, y = B1 cos(ωt) ⇒ y = −ωB1 sin(ωt), so our equation is

.. .


mx + bx + kx = −bωB1 sin(ωt) . (2) 
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We know that the periodic system response will be sinusoidal, and as 
usual we choose the amplitude-phase form with the cosine function 

xp = A cos(ωt − φ) . 

Since y = B1 cos(ωt) was chosen as the input, the gain g is given by g = B
A 

1
. 

As usual, we compute the gain and phase lag φ by making a complex 
replacement. 

One natural choice would be to regard q(t) = −bωB1 sin(ωt) as the 
imaginary part of a complex equation. This would work, but we must keep 
in mind that the input signal is B1 cos(ωt) and also that we want to express 
the solution xp as xp = A cos(ωt − φ). 

Instead we will go back to equation (1) and complexify before taking 
the derivative of the right-hand-side. Our input y = B1 cos(ωt) becomes 
ỹ = B1eiωt and the DE becomes 

.. . 
mz + bz + kz = bỹ� = iωbB1eiωt . (3) 

Since y = Re(ỹ) we have x = Re(z); that is, the sinusoidal system response 
xp of (2) is the real part of the exponential system response zp of (3). The 
Exponential Response Formula gives 

iωbB1 iωtzp = e
p(iω) 

where 
p(s) = ms2 + bs + k 

is the characteristic polynomial. 

The complex gain (scale factor that multiplies the input signal to get the 
output signal) is 

iωb 
g̃(ω) = . 

p(iω) 

Thus, zp = B1 g̃(ω)eiωt . 

We can write g̃ = |g̃|e−iφ, where φ = −Arg(g̃). (We use the minus sign 
so φ will come out as the phase lag.) Substitute this expression into the 
formula for zp to get 

zp = B1|g̃| ei(ωt−φ). 

Taking the real part we have 

xp = B1|g̃| cos(ωt − φ). 
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All that’s left is to compute the gain g = |g̃| and the phase lag φ = −Arg(g̃). 
We have 

p(iω) = m(iω)2 + biω + k = (k − mω2) + biω , 

so, 
iωb iωb 

g̃ = 
p(iω)

=
(k − mω2) + biω 

. (4) 

This gives 

ωb ωb 
g(ω) = g̃ = = � .| | |p(iω)| (k − mω2)2 + b2ω2 

In computing the phase φ we have to be careful not to forget the factor of i 
in the numerator of g̃. After a little algebra we get 

φ(ω) = −Arg(g̃) = tan−1(−(k − mω2)/(bω)). 

As with the system driven through the spring, we try to find the input 
frequency ω = ωr which gives the largest system response. In this case we 
can find ωr without any calculus by using the following shortcut: divide 
the numerator and denominator in (4) by biω and rearrange to get 

1 1 
g̃ = 

1 + (k − mω2)/(iωb)
= 

1 − i(k − mω2)/(ωb) 
. 

Now the gain g = |g̃| can be written as 

1 
g = � . 

1 + (k − mω2)2/(ωb)2 

Because squares are always positive, this is clearly largest when the term 
k − mω2 = 0. At this point g = 1 and ωr = 

√
k/m = ω0, i.e. the resonant 

frequency is the natural frequency. 

Since g̃(ω0) = 1, we also see that the phase lag φ = Arg(g̃) is 0 at ωr 

Thus the input and output sinusoids are in phase at resonance. 

We have found interesting and rather surprising results for this dashpot-
driven mechanical system, namely, that the resonant frequency occurs at 
the system’s natural undamped frequency ω0; that this resonance is inde­
pendent of the damping coefficient b; and that the maximum gain which 
can be obtained is g = 1. We can contrast this with the spring-side driven 
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system worked out in the previous note, where the resonant frequency cer­
tainly did depend on the damping coefficient. In fact, there was no res­
onance at all if the system is too heavily damped. In addition, the gain 
could, in principle, be arbitarily large. 

Comparing these two mechanical systems side-by-side, we can see the 
importance of the choice of the specification for the input in terms of un­
derstanding the resulting behavior of the physical system. In both cases the 
right-hand side of the DE is a sinusoidal function of the form B cos ωt or 
B sin ωt, and the resulting mathematical formulas are essentially the same. 
The key difference lies in the dependence of the constant B on either the 
system parameters m, b, k and/or the input frequency ω. It is in fact the 
dependence of B on ω and b in the dashpot-driven case that results in the 
radically different result for the resonant input frequency ωr. 

Note: As with the mechanical system driven through the spring, the me­
chanical system driven through the dashpot has an exact mathematical ana­
log in a series RLC circuit. We will discuss this in the next session. 
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