
Part II Problems and Solutions 

Problem 1: [Superposition; exponential response formula] Find the general real solution 
of: 

.
(a) x + 2x = e3t cos(4t). (You could do this using an integrating factor, but it’s easier to 
write the equation as the real part of a complex-valued equation with exponential right 
hand side, and use the ERF.) 

.. .
(b) x + x + 2x = cos t. (Express the sinusoidal solution of this equation in two ways: as 
a cos t + b sin t, and as A cos(t − φ).) 

Now open the Mathlet Forced Damped Vibrations. As in Damped Vibrations, the initial 
conditions are set by the box at left. There is now a forcing term, A cos(ωt), and the values 
of A and ω are adjustable by sliders, as are the values of the mass, damping constant, and 
spring constant. The force in this system is applied directly to the mass (rather than being 
mediated by the spring or the dashpot). 

Set m = 1.00, b = 1.00, and k = 2.00. 

(c) Start by setting A = 0.00, so you are looking at the homogeneous case. Set the initial .
condition to x(0) = 0 and x(0) = 1, select the Solution curve only, and measure the pseu­
doperiod. (Notice that a slider above the graphing window lets you adjust the vertical 
scale.) How well does your measurement agree with what you found in (b)? 

(d) Now set A = 1.00 and ω = 1.00. Select the green Steady State curve. Measure its am­
plitude and the value at t = 0. You computed this solution in (b). Compare the computed.
amplitude and value at t = 0 with what you measured. Also compute xp(0). 

.
(e) Finally, select initial condition x(0) = 0, x(0) = 0: so-called rest initial conditions. 
(Clicking on a hashmark gives the exact value.) If you select Steady State, Transient, and 
Solution, you can see all three: x = xp + xh. Please compute xh. 

. 3+4i t )Solution: (a) z + 2z = e( has solution 

e(3+4i)t e(3+4i)t 1 3t i(4t−φ)zp = = = √ e e , 
p(3 + 4i) 5 + 4i 41 

1where φ = Arg(5 + 4i) = tan− (4/5). Thus, 
3te

xp = Re (zp) = √ cos(4t − φ). 
41 

The homogeneous equation has solution xh = ce−2t, so 

3t 
−2tx = √ 

e
cos(4t − φ) + ce . 

41 
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.. . it/p 1 it (b) z + z + 2z = eit has solution zp = e (i); p(i) = −1 + i + 2 = 1 + i so zp = 1+i e = √
1−i 1 1 iπ/4(cos t + i sin t) and xp = cos t + sin t. We can also write p(i) = 1 + i = 2e ,2 2 2√ √
 

1 e−iπ/4 it 2 2
so zp = √ e = ei(t−π/4) and xp = Re (zp) = cos(t − π 
4 ). The charac­2 22 √ 

2 1 2 7( ) rootsteristic polynomial is p s = s + s + 2 = (s + ) + with  − 1 ±  7 i, so the 2 4  2 2 √   √ 
e−t/2 7 7homogeneous equation has general solution xh = a cos 2 t + b sin 2 t or  √  

t/2 7xh = Ae− cos t − φ . The general solution is x = xp + xh.2 

(c) I measure the first six zeros to be 2.36, 4.76, 7.12, 9.48, 11.89, 14.19. The successive differ­
ences are 2.40, 2.36, 2.36, 2.41, 2.30, with an average of 2.366. My measured pseudoperiod√ 
is twice this, 4.73. The damped circular frequency of this system is ωd = 7 so the pseu­2 

4πdoperiod is 2π = √ c 4.7496. Not bad agreement. ωd 7 

(d) I measure the amplitude as 0.71. It looks like xp(0) c 0.50. Computed amplitude is √ √ 
2 2 π 1 . 

xp t =c 0.707. Computed value is xp( ) 0 = cos(− 4 ) = . Good agreement! ( ) 2 2 2√ √ 
2 . 1− sin(t − π ) so xp(0) = − 2 sin(− π ) = 2 .2 4 2 4 

. .
(e) We need to select xh so that xh( ) = −x 0 = − 2

1 and xh(0) = = − 1 It’s0 p( ) −xp(0) 2 . 
more convenient to use the rectangular expression for xh for this. xh(0) = a so a = − 2 .  √   √   √   √ 

1 

. . 
e−t/2 − 1 7 7 7 − 1 7x = 2 a + b cos t + (· · · ) sin so x (0) = 2 a + 2 b. Thus b =h 2 2 2 t h   √   √   

2 1 2 1 3 −t/2 1 7 3 7√ 
 
x 
. 

h( ) + 0 a
 
= √ 

 
− 2 − 1  = − √ . xh = e − 2 cos 2 t − √ sin 2 t .2 47 7 2 7 2 7

Problem 2: [Operators, resonance] Use the Resonant ERF to find the general real solution 
of . −tx + x = e

Solution: p(s) = s + 1 and p(−1) = 0, so we are in resonance. p'(s) = 1 so the 
ERF/Resonant gives 

txp = te− . 

The general solution is therefore 
x = te−t + ce−t . 

2
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