
18.03SC Unit 2 Practice Exam and Solutions 

Study guide 

1. Models. A linear differential equation is one of the form an(t)x(n) + + a1(t)x 
. 
+· · · 

a0(t)x = q(t). The ak(t) are “coefficients.” The left side models a system, q(t) arises 
from an input signal, and solutions x(t) provide the system response. In this course the 
system is unchanging—time-invariant—so the coefficients are constant. Then the equation 
can be written in terms of the characteristic polynomial p(s) = ansn + + a1s + a0 as· · · 
p(D)x = q(t). 

Spring system: p(s) = ms2 + bs + k. System response x is position of the mass. If driven 
directly, q(t) = Fext(t). If driven through the spring, q(t) = ky(. t) (y(t) the position of the 
far end of the spring). If driven throught the dashpot, q(t) = by (y=position of far end of 
dashpot). 

2. Homogeneous equations. The “mode” ert solves p(D)x = 0 exactly when p(r) = 0. 
If r is a double root one needs tert also (etc.). The general solution is a linear combination 
of these (Super I). If the coefficients are real and r = a + bi with b �= 0 then eat cos(bt) 
and eat sin(bt) are independent real solutions. If all roots have negative real part then all 
solutions decay to zero as t ∞ and are called transients. In case p(s) = ms2 + bs + k→
with m > 0 and b, k ≥ 0, the equation is overdamped if the roots are real and distinct 
(k < b2/4m), underdamped if the roots are not real (k > b2/4m), and critically damped if there 
is just one (repeated) root (k = b2/4�m). In the underdamped case the general solution is 

Ae−bt/2m cos(ωdt − φ) where ωd = m
k − ( b )2 is the damped circular frequency.2m 

3. Linearity. Superposition III: if p(D)x1 = q1(t) and p(D)x2 = q2(t), then x = c1x1 + c2x2 
solves p(D)x = c1q1(t) + c2q2(t) (c1, c2 constant). Consequence (Super II): the general 
solution to p(D)x = q(t) is x = xp + xh where xp is a solution and xh is the general 
solution to p(D)x = 0. 

4. Exponential response formula: If p(r) �= 0 then Aert/p(r) solves p(D)x = Aert . If 
p(r) = 0 but p�(r) �= 0 then Atert/p�(r) solves p(D)x = Aert. (Etc.) 

5. Complex replacement: If p(s) has real coefficients then solutions of p(D)x = Aert cos(ωt) 
are real parts of solutions of p(D)z = Ae(r+iω)t . 

6. Undetermined coefficients: With p(s) = ansn + · · · + a1s + a0, if a0 �= 0 then p(D)x = 
bktk + + b1t + b0 has exactly one polynomial solution, which has degree at most k. If ak· · · 
is the first nonzero coefficient, then make the substitution u = x(k) and proceed (“reduction 
of order”). For xp you can take constants of integration to be zero. 

7. Variation of parameters: To solve p(D)x = f (t)ert, try x = uert. This leads to a different 
equation for u with right hand side f (t). 

8. Time invariance: If p(D)x = q(t), then y = x(t − a) solves p(D)y = q(t − a). This lets 
you convert any sinusoidal term in q(t) to a cosine. 

9. Frequency response: An input signal y determines q(t) in p(D)x = q(t). With y = ycx = 
eiωt, an exponential system response has the form H(ω)eiωt for some complex number 
H(ω), calculated using ERF. (If ERF fails then the complex gain is infinite.) Then with 
y = A cos(ωt), xp = g cos(ωt − φ) where g = |H(ω)| is the gain and φ = −Arg (H(ω)) is 
the phase lag. By time invariance the gain and phase lag are the same for any sinusoidal 
input signal of circular frequency ω. 
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Practice Hour Exam 

1. The mass and spring constant in a certain mass/spring/dashpot system are known— 
m = 1, k = 25—but the damping constant b is not known. It’s observed that for a certain 
solution x(t) of 

.. 
x + bx 

. 
+ 25x = 0, x( π 

6 ) = 0 and x( π 
2 ) = 0, but x(t) > 0 for π 

6 < t < π 
2 . 

(a) Is the system underdamped, critically damped, or overdamped? 

(b) Determine the value of b. 

2. Find a solution of 3
.. 
x + 2x 

. 
+ x = t2. 

3. Find a solution to 
.. 
x + 3x 

. 
+ 2x = e−t . 

.. .
4. This problem concerns the sinusoidal solution x(t) of x + 4x + 9x = cos(ωt). 

(a) For what value of ω is the amplitude of x(t) maximal? 

(b) For what value of ω is the phase lag exactly π 
4 ? 

.. . .
5. The equation 2x + x + x = y models a certain system in which the input signal is y and 
the system response is x. We drive it with a sinusoidal input signal of circular frequency 
ω. Determine the complex gain as a function of ω, and the gain and phase lag at ω = 1. 

d3x
6. Find a solution to + x = e−t cos t.

dt3 

7. Assume that cos t and t are both solutions of the equation p(D)x = q(t), for a certain 
polynomial p(s) and a certain function q(t). 

(a) Write down a nonzero solution of the equation p(D)x = 0. 

(b) Write down a solution x(t) of p(D)x = q(t) such that x(0) = 2. 

(c) Write down a solution of the equation p(D)x = q(t − 1). 

2
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Solutions 

1. (a) Underdamped. 

(b) The pseudoperiod is 2( π 
2 − π 

6 ) = 2
3 
π . Thus ωd = 2π

2π 
/3 = 3, 9 = ωd 

2 = k − (b/2)2 = 
25 − (b/2)2, so (b/2)2 = 25 − 9 = 16, b/2 = 4, b = 8. 

1] x = at2 + bt + c .
2] x = 2at + b

2. ..
3] x = 2a 

t2 = at2 + (b + 4a)t + c + 2b + 6a 

so a = 1, b + 4a = 0, c + 2b + 6a = 0, b = −4, c = 2: xp = t2 − 4t + 2. 

3. p(s) = s2 + 3s + 2, p(−1) = (−1)2 + 3(−1) + 2 = 0, so ERF fails. p�(s) = 2s + 3, 
p�(−1) = 1, xp = te−t . 

4. (a) The amplitude is 1/|p(iω)|. p(iω) = (k − mω2) + biω = (9 − ω2) + 4iω. To maxi­
mize the amplitude we can minimize |p(iω)|2 = (9 − ω2)2 + 16ω2. Now 

d |p(iω)|2 = 2(9 − ω2)(−2ω) + 2 · 16ω is zero when ω = 0 and when (9 − ω2) = 8, or 
dω 
ω = ±1. Thus ωr = 1. 

(b) The phase lag is the argument of p(iω). This is π 
4 when the real and imaginary parts 

are equal and positive. So 9 − ω2 = 4ω, or ω2 + 4ω − 9 = 0, i.e. (ω + 2)2 − 13. This is zero 
when ω = −2 ±

√
13. Choose the + for a positive value: ω = 

√
13 − 2. 

5. By time-invariance, we can suppose that the input signal is y = A cos(ωt). Replace y 
iωtwith ycx = Aeiωt . The equation is then 2

.. 
z + z 

. 
+ z = Aiωe . p(iω) = (1 − 2ω2) + iω, 

Aiω iω
so by the ERF zp =

(1 − 2ω2) + iω 
eiωt. So H(ω) = 

(1 − 2ω2) + iω 
. With ω = 1, H(1) = 

−1
i 
+i = 1 , which has magnitude g(1) = √1

2
. The phase lag is −Arg (H(1)) = π 

1+i 4 . 

6. This is the real part of 
d
dt

3

3 
z 
+ z = e(−1+i)t. The characteristic polynomial is p(s) = s3 + 1, 

and p(−1 + i) = 2(1 + i) + 1 = 3 + 2i. So zp = 
e(−1+i)t 

= e−t 3 − 2i 
eit, and xp = Re (zp) = 

3 + 2i 13 
1 
13 e

−t(3 cos t + 2 sin t) (This can also be done using variation of paramters.) 

7. (a) By linearity, p(D)(cos t − t) = p(D) cos t − p(D)t = q(t) − q(t) = 0. In fact a(cos t −
t) will work for any a (except a = 0, since we wanted a nonzero solution). 

(b) By linearity, we can add any homogeneous solution and get a new solution. If we start 
with xp = t, we can add xh = 2(cos t − t): x = 2 cos t − t. 

(c) By time-invariance, x(t − 1) will work, for any solution x(t) of p(D)x = q(t). So t − 1 
and cos(t − 1) work, as does a cos(t − 1) + (1 − a)(t − 1) for any a. 

Actually, LTI implies that if one sinusoidal function of circular frequency 1 is a solution of 
p(D)x = 0, then any sinusoidal function of circular frequency 1 is too, so there are even 
more choices of answers to all these questions. 
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