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Under, Over and Critical Damping 

1.	 Response to Damping 

As we saw, the unforced damped harmonic oscillator has equation 
.. . 

mx + bx + kx = 0,	 (1) 

with m > 0, b ≥ 0 and k > 0. It has characteristic equation 

ms2 + bs + k = 0 

with characteristic roots 
−b ±

√
b2 − 4mk 

(2)
2m 

There are three cases depending on the sign of the expression under the 
square root: 

i) b2 < 4mk (this will be underdamping, b is small relative to m and k). 

ii)	 b2 > 4mk (this will be overdamping, b is large relative to m and k). 

iii)	 b2 = 4mk (this will be critical damping, b is just between over and 
underdamping. 

Mathematically, the easiest case is overdamping because the roots are 
real. However, most people think of the oscillatory behavior of a damped 
oscillator. Since this is connected to underdamping we start with that case. 

Case (i) Underdamping (non-real complex roots) 
If b2 < 4mk then the term under the square root is negative and the 

characteristic roots are not real. In order for b2 < 4mk the damping constant 
b must be relatively small. 

First we use the roots (2) to solve equation (1). 
Let ωd = b2 − 4mk /2m. Then we have |

−
|
b

characteristic roots: 
2m 

± iωd. leading to 

complex exponential solutions: e(−b/2m+iωd)t , e(−b/2m−iωd)t .

The basic real solutions are e−bt/2m cos(ωdt) and e−bt/2m sin(ωdt).

The general real solution is found by taking linear combinations of the two

basic solutions, that is:


x(t) = c1e−bt/2m cos(ωdt) + c2e−bt/2m sin(ωdt) 



Under, Over and Critical Damping OCW 18.03SC


or 

� � 

x(t) = e−bt/2m(c1 cos(ωdt) + c2 sin(ωdt)) = Ae−bt/2m cos(ωdt − φ). (3) 

Let’s analyze this physically. When b = 0 the response is a sinusoid. 
Damping is a frictional force, so it generates heat and dissipates energy. 
When the damping constant b is small we would expect the system to still 
oscillate, but with decreasing amplitude as its energy is converted to heat. 
Over time it should come to rest at equilibrium. This is exactly what we 
see in (3). The factor cos(ωdt − φ) shows the oscillation. The exponential 
factor e−bt/2m has a negative exponent and therefore gives the decaying 
amplitude. As t ∞, the exponential goes asymptotically to 0, so x(t)→
also goes asympotically to its equilibrium position x = 0. 

We call ωd the damped angular (or circular) frequency of the system. 
This is sometimes called a pseudo-frequency of x(t). We need to be careful 
to call it a pseudo-frequency because x(t) is not periodic and only periodic 
functions have a frequency. Nonetheless, x(t) does oscillate, crossing x = 0 
twice each pseudo-period. 

.. .
Example 1. Show that the system x + 1x + 3x = 0 is underdamped, find its 
damped angular frequency and graph the solution with initial conditions . 
x(0) = 1, x(0) = 0. 

Solution. Characteristic equation: s2 + s + 3 = 0.

Characteristic roots: −1/2 ± i

√
11/2.


Basic real solutions: e−t/2 cos(
√

11 t/2), e−t/2 sin(
√

11 t/2).

General solution:


x(t) = e−t/2(c1 cos(
√

11 t/2)+ c2 sin(
√

11 t/2)) = Ae−t/2 cos(
√

11 t/2 − φ). 

Since the roots have nonzero imaginary part, the system is underdamped.

The damped angular frequency is ωd = 

√
11/2.


The initial conditions are satisfied when c1 = 1 and c2 = 1/
√

11. So,


x(t) = e−t/2 cos(
√

11 t/2) + √1
11 

sin(
√

11 t/2) 
√

12 
e−t/2 = √

11 
cos(

√
11 t/2 − φ), 

where φ = tan−1(1/
√

11). 

2 
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Figure 1: The damped oscillation for example 1. 

Case (ii) Overdamping (distinct real roots)

If b2 > 4mk then the term under the square root is positive and the char­

acteristic roots are real and distinct. In order for b2 > 4mk the damping

constant b must be relatively large.


One extremely important thing to notice is that in this case the roots 
are both negative. You can see this by looking at the formula (2). The 
term under the square root is positive by assumption, so the roots are real. 
Since b2 − 4mk < b2 the square root is less than b and therefore the root 
−b + 

√
b2 − 4mk < 0. The other root is clearly negative. 

Now we use the roots to solve equation (1) in this case. 
−b + 

√
b2 − 4mk −b −

√
b2 − 4mk 

Characteristic roots: r1 = , r2 = .
2m 2m 

Exponential solutions: er1t , er2t . 
General solution: 

x(t) = c1er1t + c2er2t . 

Let’s analyze this physically. When the damping is large the frictional 
force is so great that the system can’t oscillate. It might sound odd, but 
an unforced overdamped harmonic oscillator does not oscillate. Since both 
exponents are negative every solution in this case goes asymptotically to 
the equilibrium x = 0. 

At the top of many doors is a spring to make them shut automatically. 
The spring is damped to control the rate at which the door closes. If the 
damper is strong enough, so that the spring is overdamped, then the door 
just settles back to the equilibrium position (i.e. the closed position) with­
out oscillating –which is usually what is wanted in this case. 

.. .
Example 2. Show that the system x + 4x + 3x = 0 is overdamped and .
graph the solution with initial conditions x(0) = 1, x(0) = 0. Which root 
controls how fast the solution returns to equilibrium? 
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Solution. Characteristic equation: s2 + 4s + 3 = 0.

Characteristic roots: (this factors) −1, −3.

Exponential solutions: e−t , e−3t .

General solution:


x(t) = c1e−t + c2e−3t . 

Because the roots are real and different, the system is overdamped.

The intial conditions are satisfied when c1 = 3/2, c2 = −1/2. So, x(t) =

3e−t/2 − e−3t/2.
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Figure 2: The overdamped graph for example 2. 

Because e−t goes to 0 more slowly than e−3t/2 it controls the rate at which 
x goes to 0. (Remember, it is the term that goes to zero slowest term that 
controls the rate.) 

Case (iii) Critical Damping (repeated real roots)

If b2 = 4mk then the term under the square root is 0 and the characteristic

polynomial has repeated roots, −b/2m, −b/2m.


Now we use the roots to solve equation (1) in this case. We have only 
one exponential solution, so we need to multiply it by t to get the second 
solution. 
Basic solutions: e−bt/2m , te−bt/2m . 
General solution: 

x t  e−bt/2m( ) = (c1 + c2t). 

As in the overdamped case, this does not oscillate. It is worth noting 
that for a fixed m and k, choosing b to be the critical damping value gives 
the fastest return of the system to its equilibrium position. In engineering 
design this is often a desirable property. This can be seen by considering 
the roots, but we will not go through the algebra that shows this. (See figure 
(4).) 
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.. .
Example 3. Show that the system x + 4x + 4x = 0 is critically damped and .
graph the solution with initial conditions x(0) = 1, x(0) = 0. 

Solution. Characteristic equation: s2 + 4s + 4 = 0.

Characteristic roots: (this factors) −2, −2.

Exponential solutions: (only one) e−2t .

General solution:


x(t 2t) = e− (c1 + c2t). 

Because the roots are repeated, the system is critically damped. 
The intial conditions are satisfied when c1 = 1, c2 = 2. So, 
x t  e−2t( ) = (1 + 2t). 
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Figure 3: The critically damped graph for example 3. 

Notice that qualitatively the graphs for the overdamped and critically 
damped cases are similar. 

.. .
The following figure shows plots for solutions to x + bx + x = 0 with .

initial conditions x(0) = 1, x(0) = 0. The three plots are b = 1 under-
damped; b = 2 critically damped (dashed line); b = 3 overdamped. Notice 
that the critically damped curve has the fastest decay. 
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Figure 4: Plots of solutions to x + bx + x = 0. 
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