
Impedance 

Im 
1. Simple Complex Arithmetic Fact iz z 

You should be clear that in the complex plane multiplication by i 
is the same as rotation by π/2. Likewise division by i is the same Re 
as rotation by −π/2. 
The phase difference between two complex numbers a and b is z/i =  iz 
simply the difference of their arguments, Arg(a) − Arg(b). The 

−

simple arithmetic fact implies 

z and iz have a phase difference of π/2. 
(1)z and z/i have a phase difference of −π/2. 

We will need this when we discuss phasors. 

2. Complex Impedance 

We repeat for reference some of the DE’s given in the previous note. 

.. . 1
LQ + RQ + Q = V

C in (2) 
 

.. . 1 . 
L I + RI + I = V

C in (3) 
 

Using complex arithmetic and the Exponential Response formula we 
can understand all the statements about impedance and phasors. 

First, note that if we remove the inductor and capacitor then (2) is just. 
Ohm’s law, i.e. RQ = RI = Vin. 

Now we make the crucial assumption of sinusoidal input (alternating 
current): 

Vin(t) = V0 sin(ωt). 

With this input we will solve equation (3). 

First, complexify (3): (Because of the tildes (I)  we use prime instead of 
dot to indicate derivatives.) 

1 
LII ''  RII '  II  VI '  i V e iω t 

I
+ + = in = ω 0 , I = Im(I) .

C 

The Exponential Response formula gives the periodic solution: 

I

I iωV
I  0 
= eiωt . (4)

P(iω)
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A little algebra shows that the coefficient of V0eiωt in (4) is 

iω iω 1 
= = .

P(iω) −Lω2 + 1/C + Riω iLω + 1/(iCw) + R 

Accordingly we define the complex impedance as 

1
ZI = iLω + + R. (5)

iCw 

(Notice ZI depends on the input frequency ω.) 

We can now write the complex version of Ohm’s law (always assuming 
VIin = V0eiωt): I 1

I = I · V
Z 

We can associate a separate impedance to each cir

Iin or VIin = ZIII. (6)

cuit element: 

ZI 1 
L = iLω, ZR = R, ZC = . (7)

iCω 

Comparing (5) and (7) we see th

I
at for a set 

I
of elements wired in series 

the total complex impedance is just the sum of the individual impedances. 
That is, impedance behaves just like resistance in series. 

What’s more, using the voltage drops across each element we see they 
individually satisfy a complex Ohm’s Law. 

1 1 1
VIL = LII ' = LiωII = ZILII, VIR = R =

 II, VI = QI  I = I  C = Z I
C  .

C iC C
ω 

Note: the formulas involving ω depend crucially on the 

I
assumption 

I I
that 

I
the complex input is V0  eiωt .

3. Impedance in Parallel 

It is also true and easy to show that for circuit elements in parallel the 
complex impedances combine like resistors in parallel. That is, if impedances 
ZI1 and ZI2 are in parallel then the total impedance of the pair, call it Z, sat­

1 1 1
isfies I = I + I . 

Z Z1 Z2 

I
To see this we use Ohm’s law for a single circuit, KVL and Kirchoff’s cur­
rent law (KCL). They imply 

2
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I I•  • 2 • 

I I = I1 + I2, VI = II1ZI1, V = I2Z 1 
2. 

I V V 1⇒ I =
I

+
I

= VI 1
• • 

  V Z

I
+ 

1 Z2 1 Z2 
1

 
Z

I I 
Z 1 Z2 

• • ⇒ V

I I I I
I = 

1/Z Z

4. Amplitude-Phase

I1 + 1/

I I
I I. QED

2 

I
•  • • 

 Form and Real Impedance 

First we put the expression (5) for complex impedance in the form we 
need 

1 1
ZI = iLω + + R = i(Lω − ) + R = iS + R.

iCω Cω 

We call S = Lω − 1/(Cω) the reactance; note that S = 0 when 2 ω = 
1/(LC). 

In amplitude phase form ZI = |ZI|e i φ, where |ZI| =  S2 + R2 and  1φ = Arg(ZI) = tan− (S/R).

Notice the sign of φ depends on the sign of S = Lω − 1/Cω and also that
 
φ is between −π/2 and π/2.
 

Thus,
 

I V0 i(ωt V
I √ −φ) 0 i=  e (ωt= e −φ). (8)

S2 + R2 (Lω − 1/Cω)2 + R2 

√ 
The term S2 + R2 = |ZI| = (

 
 

Lω − 1/Cω)2 + R2 is called the real impedance. 

Taking imaginary parts in (8) gives 

I|ZI| = V0 sin(ωt − φ), 

which is like Ohm’s Law, except with a phase shift. 

5. Phasors 

(The term phasor just means eiωt). 

We have seen that each element of an LRC circuit obeys a complex 
Ohm’s law: 

V

the 

IL = ZILII = LiωII, V

Each of complex voltages is 

I I 1
R = RI, VIC = ZICII = 

C
II. (9)

i ω 

some constant factor I, which is, in turn, 
a multiple of eiωt . If we plot the voltages in the complex plane then as t 
increases the entire picture will rotate at frequency ω. W

I
e call each of these 

voltages a phasor. 

1_ 1_
  

__
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We want to look at the phase difference between the various voltages. 
By our simple arithmetic fact (1), the factors i and 1/i in VIL and VC imply 

1. The phasors VIL and VIC are respectively π/2 ahead and π/2 behind 

I
VIR. 

Equation (8) implies 

2. The phasor VIR is φ behind VIin (if φ is negative then VIR is ahead of VIin. 
Later we will look at the excellent Series LRC Circuit applet which illus­
trates this. 

Im 
V V 
IL Iin 

φ
ωt

II 
 

 VIR Re 

 VC 

6. Amplitude Response and Practical

I
 Resonance 

 
The natural frequency of the circuit is ω0 = 1/ 

√
LC. This is the fre­

quency of oscillation when the “damping” term R is zero. 

The practical resonance of the system (3) is independent of the value of√ 
R and always at the natural frequency ω0 = 1/ LC (This is easy to see in 
(8), since |II| is clearly maximized when the term (Lω − 1/C 2 ω) = 0.) 

That is, practical resonance occurs when 

V
ZIL + ZIC = 0 ⇒ iLω − i/Cω = 0 ⇒ ZI = 0 

= R, II e iωt.
R 

In the phasor picture, at practical resonance VIin, II and VIR all line up, i.e., 
lag is 0 and VIR = VIin. 

This is one case where the corresponding sinusoidal graphs of the real 
voltages are neat enough to give a nice picture: the graph of VR is exactly 
in phase with V  

in; VL and VC have the same magnitude and are 180◦ out of 
phase; increasing R doesn’t change VR, but decreases the amplitude of VL 

and VC. 

The applet Series LRC Circuit shows all this beautifully. 
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