
Part II Problems and Solutions 

Problem 1: [Series RLC circuits; amplitude and phase] Open the Mathlet Series RLC 
Circuit. Here we will focus entirely on the current response, so it will be clearer if the 
check boxes labelled VR, VL, VC, are left unchecked. But click twice on the I box, to make 
a green curve appear in the graphing window, representing the current through any point 
in the circuit as a function of time. 

The Mathlet uses the International System of Units, SI, formerly known as the mks (meter­
kilogram-second) system. The equation 

.. . . 
LI + RI + (1/C)I = V 

is correct when:

the resistance R is measured in ohms, Ω,

the inductance L is measured in H, henries,

the capacitance C is measured in farads, F,

the voltage V is measured in volts, also denoted V,

the current I is measured in amperes, A.


The slider displays millihenries, mH (1 mH= 10−3 H) and microfarads, µF (1µF= 10−6 F), 
and milliseconds, ms (1 ms = 10−3 sec). 

The Mathlet studies a sinusoidal input signal V(t) = V0 sin(ωt). Play around with the 
various sliders and watch the effect on the (blue) voltage curve and the (green) current 
curve. 

(a) By experimenting, identify a few values of the system parameters R, L, C, V0, ω, for 
which the current and the voltage are perfectly in phase. For example, if L = 500 mH and 
ω = 200 radians/second, what values of R, C, and V0 put I in phase with V? 

(b) Now calculate the relationship between the system parameters which leads to I and V 
being in phase. Do your experiments align with your calculations? 

(c) Set R = 100 Ω, L = 1000 mH, C = 100 µF, V0 = 500 V. Vary ω and watch the action. 
For what value of ω is the amplitude of I(t) maximal? What is that amplitude (in amps)? 
What is the phase lag between the input signal, V0 sin(ωt), and the system response, I(t), 
for that value of ω? 

(d) Verify the three observations made in (c) computationally. You should be able to do 
this for general values of R, L, C, V0. 

Solution: (a) It seems that C must be close to 50 µF. The values of V0 and R don’t seem to 
matter. 
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(b) Here is one of several ways to do this problem. We are looking at 

.. . 
LI + RI + (1/C)I = V0ω cos(ωt). 

To undersand its sinusoidal solution, make the complex replacement 

L
.. 
z + Rz 

. 
+ (1/C)z = V0ωeiωt , 

V0ωeiωt 
so that Ip = Re(zp). By the ERF, the exponential solution is zp = . To be in phase 

p(iω) 
with sin(ωt), the real part of this must be a positive multiple of sin(ωt). This occurs 
precisely when the real part of p(iω) is zero. Re p(iω) = (1/C) − Lω2, so the relation 
is 1/C = Lω2. 

To check, when L = 500 mH= .5 H and ω = 200 rad/sec, the system response is in phase 
when C = 1/(.5 × (200)2) = 50 × 10−6 F = 50 µF. 

(c) It seems that the maximal system response amplitude Ir occurs when ω = 100 rad/sec, 
and that it is about 5 amps. Then the solution is in phase with the input voltage. 

V0ωeiωt 
(d) In (b) we saw that the solution is the real part of zp = 

p(iω) 
. The amplitude of 

p(iω) 
V0ω (1/C − Lω2) + Riω 

V0ω 
this sinusoid is
 , which is maximal when its reciprocal
 =


1 
Cω 

− Lω + Ri is minimal. The imaginary part here is constant, so as ω varies the


complex number moves along the horizontal straight line with imaginary part R. The 
point on that line with minimal magnitude is Ri, which occurs when the real part is zero: 
1/Cω = Lω, or ωr = 1/

√
LC. The amplitude is then Ir = g(ωr)V0 = V0/R. It depends 

only on V0 and R, not on L or C! Finally, this is the same as the condition for phase lag 
zero, so the phase lag at ω = ωr is zero. 

With the given values R = 100 Ω, L = 1 H, C = 10−4 F, ωr = 100 rad/sec, as observed. 
When V0 = 500 V and R = 100 Ω, Ir = 5 Amps, as observed. 

Problem 2: AM Radio Tuning and LRC Circuits 

An LRC circuit can be modeled using the same DE as in the previous problem. Specifically, 
1

LI�� + RI� + I = E�.
C 

Where I = current in amps, L = inductance in henries, R = resistance in ohms, C = capaci­
tance in farads and E = input EMF in volts. Often the important output is the voltage drop 
VR across the resistor. Ohm’s law tells us VR = RI. This gives us the DE 
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1
LVR

�� + RVR
� + VR = RE�.

C 

(a) Assume E = E0 cos(ωt) and solve the DE for VR in phase-amplitude form. 

(b) Open the ’LRC Filter Applet’. This applet models an LRC circuit with input voltage a 
superposition of sine waves. Play with the applet –be sure to learn how to vary ω1 and ω2 
by dragging the dots on the amplitude plot. 
Describe what happens to the amplitude response plot as L, R and C are varied. 

(c) An LRC circuit can be used as part of a simple AM radio tuner. In an AM radio broad­
cast the signal is given by a cos(ωt) where ω is the ’carrier’ frequency (between 530 and 
1600 khz). To really carry information the amplitude a must vary –this is the amplitude 
modulation– but, we will ignore this right here. 

The range of values for this simple variable capacitor AM radio tuner is L ≈ .5 microhen­
ries, R is the resistance in the wire (very small) and C is between .02 and .2 microfarads. To 
keep things simple we will use different ranges however the idea is the same. 

In the LRC Filter applet set ω1 = 1 and w2 = 4 (set them as close as you can on your 
system). Set the input amplitudes a and b to 1. Find settings for L, R and C so that the 
output filters out the ω2 part of the signal i.e. the output looks (a lot) like a sine wave of 
frequency ω1. Give your values for L, R and C. 

How does the quality of the filter change as you vary R? 

(d) An antenna on a radio picks up electomagnetic signals from all frequencies. It responds 
by outputing a signal consisting of voltages at each of these frequencies. This signal is used 
as input to a tuner circuit. 

Using the applet, set L = 1, R = .5. Now, vary C and then explain why a variable capacitor 
circuit could be used as an AM radio tuner. 

(e) Show that the natural frequency (undamped, unforced resonant frequency) of the sys­
tem is ω0 = 1/

√
LC. Show that even with damping, i.e., R > 0, ω0 is always the practical 

resonant frequency. (Hint: this can be done without calculus by writing A(ω) in the proper 
way.) 

Solution: (a) Here is the answer with very little comment. (Note we complexify the input

before taking the derivative.)

For simplicity write V for VR.

Complex DE: LṼ �� + RṼ � + C 

1 Ṽ = (RE0eiωt)� = iωRE0eiωt , V = Re(Ṽ).


Char. polynomial: P(iw) = 
C 
1 − Lω2 + Riω. 
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Note: P(iω)| = (1 − LCω2)2 + (RCω)2
,|

C 

P(i
i 
ω)

=
(1 − LCω2)

C 
2 + (RCω)2 (RCω + i(1 − LCω2)). 

˜ iRωE0 iωtExp. Input Thm: Vp = 
P(iω) 

e , Vp = Re(Ṽp). 

Amplitude-Phase Form:
 Vp = A cos(ωt − φ) , where 

A =

iRωE0 

P(iω)

=


RCωE0 

(1 − LCω2)2 + (RCω)2 
⇒


E0 �2 
A = ,� 

21 LCω− 1+ 

�
RCω 

iRωE0 i 1 − LCω2 
φ = −Arg 

P(iω)
= −Arg 

P(iω)
= − tan−1 

RCω 
, 

where, since the complex number RCω + i(1 − LCω2) is in the 1st or 4th quadrants, φ is 
between −π/2 and π/2. 

(b) Except for the fact that C corresponds to 1/k we get the same answer as the previous

problems.

As L increases the amplitude peak moves to the left and the graph gets a little spikier.

As R decreases the peak doesn’t move and the amplitude graph gets spikier.

As C increases the peak moves to the left.


(c) One possibility is L = 3, C = .33, R = .4. In any case, LC = 1. The smaller R is the less

of the ω2 frequency signal gets through. In general, the smaller the value of R the smaller

the pass-band of the filter.


(d) As C varies the spike in the amplitude graph moves. Thus changing the frequency that

can pass through the filter.


1 1(e) Without damping or forcing the DE is LI�� + C I = 0 I �� + LC I = 0 resonant 
frequency is ω0 = 1/

√
LC. 

⇒ ⇒ 

The boxed formula for A in part (a) shows that A is maximized when the term under 
the square root is minimized. This happens when the term in parentheses is 0, i.e. when 
LCω2 − 1 = 0 ⇔ ω = 1/

√
LC = ω0. 

4




MIT OpenCourseWare
http://ocw.mit.edu 

18.03SC Differential Equations�� 
Fall 2011 �� 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



