The Sinusoidal Identity

The sum of two sinusoidal functions of the same frequency is another
sinusoidal function with that frequency! For any real constants a and b,

acos(wt) + bsin(wt) = A cos(wt — ¢) (1)

where A and ¢ can be described in at least two ways:

A=+Va2+b?, ¢=tan! z; ()

a+bi = Ae'?. 3)
Conversely, we have
a= Acos(¢) and b = Asin(¢). 4)

Geometrically this is summarized by the triangle in the figure below.

a
Fig. 1. a + bi = Ae'?.

One proof of (1) is a simple application of the cosine addition formula

cos(a — B) = cos(a) cos(B) + sin(a) sin(pB).

We will now give an equivalent proof using Euler’s formula and complex
arithmetic: The triangle in Figure 1 is the standard polar coordinates trian-
gle. Itshows a+ib = Ae'? or a—ib = Ae '%. Thus

Acos(wt — §) = Re(Ae@t=¢))
e(e“!. Ae™'?)
e((cos(wt) 4+ isin(wt)) - (a —ib))
(a cos(wt) + bsin(wt) + i(asin(wt) — bcos(wt)))
os(wt) + bsin(wt).
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We should stress the importance of the trigonometric identity (1). It shows
that any linear combination of cos(wt) and sin(wt) is not only periodic of
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period 27, but is also sinusoidal. If you try to add cos(wt) to sin(wt) “by
hand”, you will probably agree that this is not at all obvious.

We will call A cos(wt — ¢) amplitude-phase form and a cos(wt) + b sin(wt)
rectangular or Cartesian form. You should be familiar with amplitude-
phase form; we usually prefer it because both amplitude and phase have
geometric and physical meaning for us.
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