
Further Numerical Methods 

Euler’s method is a first order method (no relation to first order equations). 
It is possible to show theoretically that for small enough h, the error in 
Euler’s method is at most C1h, where C1 is a constant that depends on the 
IVP. It is very hard to know ahead of time what C1 will be. 

In the previous section, we saw that making h smaller was a way to 
decrease the error caused by the variability of the direction field. However, 
there are some more sophisticated methods that turn out to be even better. 

1. General Approach 

Looked at broadly Euler’s method is a way of stepping discretely from 
one point to the next to approximate the integral curve. The general for­
mula for stepping from (xn, yn) to (xn+1, yn+1) is 

xn+1 = xn + h, yn+1 = yn + mh, 

where h is the stepsize in the x direction and m is the slope of the line we 
step along. In Euler’s method h is fixed ahead of time and m = f (xn, yn). 
(It would be more precise to write mn instead of m. We’ll use the simpler 
looking notation, with the understanding that m changes with each step.) 

Other methods use other (and better) ways of choosing h and m. We 
start with some fixed stepsize methods. As the name suggests, we fix the 
stepsize h ahead of time and put all the work into finding m 

2. The Improved Euler method 

This is also called the Runge-Kutta 2 method or RK2, or the Heun method. 

We start with the same data as for Euler’s method: an initial value prob­
lem y� = f (x, y), y(x0) = x0, and a step size h. We construct an RK2 poly­
gon, made out of segments called RK2 struts, with endpoints (xn, yn). As 
before, xn+1 = xn + h. The difference between RK2 and Euler’s method is 
the rule for choosing the slope m for each strut. At each step we start by 
constructing the Euler strut. We let m be the average of the slope field at 
the two ends of the strut. 

Example. Consider the differential equation y� = f (x, y) = y2 − x with 
initial condition y(0) = −1. Let us compute one step for the RK2 polygon 
with h = 1/2. 
Because m, x and y are reserved we’ll use the letters k, a and b for interme­
diate slopes and points.) 
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1. Compute the slope at (x0, y0): k1 = f (0, −1) = 1. 
2. Take an Euler step from (x0, y0) to (a, b): a = x0 + h = .5, b = 
y0 + k1h = −.5. 
3. Compute the slope at (a, b): k2 = f (a, b) = f (.5, −.5) = −.25. 
4. Average k1 and k2 to get m: m = (k1 + k2)/2 = .375. 5. Use m and h 
to take step from (x0, y0) to (x1, y1): x1 = x0 + h = .5, y1 = y0 + mh = 
−.8125. 

You can check, e.g. by using the applet, that this brings us down closer 
to the actual solution curve than Euler’s method. 

RK2 is a second order method: for small enough h, the error is at most 
C2h2, where the constant C2 depends on the IVP. 

Each evaluation of the direction field takes time, which usually costs 
money. Euler’s method uses one evaluation per step, whereas RK2 uses 
two; therefore, if we want to compare efficiencies, we should compare Eu­
ler’s method with step size h to RK2 with 2h. In those cases, the error 
for Euler’s method is around C1h, whereas it is around C2(2h)2 = 4C2h2 

for RK2. Even if C2 is larger than C1, for small enough h, the RK2 error 
will be significantly smaller than the Euler error. Besides, C2 is usually 
smaller than C1, which gives a second advantage to using RK2 over Euler’s 
method. 

3. Runge-Kutta 4 method 

This is usually shortened to RK4. It is a refinement of RK2; we start 
with the same data, and also build a polygon, whose segments are called 
RK4 struts. Again, at each step, the difference is in choosing the slope of 
the segment. 

In RK4 you evaluate the direction field slope four times for each step. 
We won’t give the details, they are easy enough to look up. 

Remark 1. While it’s straightforward to compute by hand, most people 
leave the computations in RK4 to a computer. 

Remark 2. You might have noticed a pattern in the numbering of the 
Runge-Kutta techniques; Euler’s method is sometimes referred to as RK1. 

RK4 is a fourth order method. For small enough h, its error is approxi­
mately C4h4. Again, the constant C4 depends on the IVP. 

It is fair to compare the errors for Euler’s method with step size h, RK2 
with step size 2h, and RK4 with 4h. Regardless of the values of C1, C2 and 
C4, for sufficiently small h, the RK4 error of C4(4h)4 will be significantly less 
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than the RK2 error of C2(2h)2 or the Euler error of C1h. Besides, C4 itself is 
usually smaller than C2 and C1. 

Example. Let us go back to our original problem: estimating e by viewing it 
as the value at 1 of the solution to the initial value problem y� = y, y(0) = 1. 
We compare the errors of our three methods. In all cases, we use 1000 
evaluations of the direction field. 

Method Step size Error 
RK1 = Euler 0.001 1.3 × 10−3 

RK2 = Heun 0.002 1.8 × 10−6 

RK4 0.004 5.8 × 10−12 

We can also estimate the constants Ci for this particular IVP: C1 1.3; 
C2 0.45; C4 0.023. 

The (short) moral is that Euler’s method often offers poor precision, and 
that RK4 is essentially always the most accurate. 

As you might have guessed, there are plenty of methods of higher order 
still; however, they also involve more overhead. Experience has shown that 
RK4 is a good compromise. 

Remark. The initial value problem y = f (x) , y(a) = y0 has solution 
y(x) = y0 + a

x f (t)dt Our numerical methods for approximating y(x) cor­
respond to integration approximation techniques: 

• Euler’s method gives the the left end-point Riemann sum; 

• RK2 gives the trapezoidal rule; 

• RK4 gives Simpson’s rule. 

4. Variable Stepsize methods 

We saw that it is not wise to pick a single stepsize and accept the results 
of the Euler method. Likewise RK2 and RK4 can be fooled. 

With the fixed stepsize methods you need to choose a value of h; do 
your computation; then redo it using stepsize h/2. You keep cutting the 
stepsize in half this until the answers stop changing. The variable step-
size techniques carry this out at each step. There are an enormous num­
ber of such methods. What they have in common is estimating at each 
step whether the stepsize needs to be made smaller or can safely be made 
larger. In general, these provide the most accurate numerical methods at 
an acceptable cost in additional computation. 
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