
Linear vs. Nonlinear 

The general linear first order ODE is 

r(t)x�(t) + p(t)x(t) = q(t). 

The general first order ODE is 
. 
y(t) = F(t, y(t)). 

Representing the linear side of the debate is Linn E. R. and Chao S. repre­
senting the nonlinear side. 

1. The Debate 

Linn: I’d like to begin by making the point that there is a solution procedure 
for linear equations, which reduces the solution of any linear equation to 
integration. Multiply the equation through by a factor so that the two terms 

d(ux)
become the two terms in , then integrate. 

dt

Sometimes you can just see this. For example,


2 . d 
t x + 2tx = t2( x).

dt 

If we are in reduced standard form, i.e. when r = 1, then this can be done 
systematically with the following steps: 
1. We seek u(t) such that 

. d(ux)
u(x + px) = ,

dt 
.

i.e. pu = u. This is separable, with solution 

 
� 

u  e p(t) dt = . 

(Any constant of integration will do here.) 

2. Then integrate both sides of 

d(ux) 
= uq 

dt 

and solve for x. This gives 
 

x(t 1) = u− (t) 
�

u(t)q(t) dt. 
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The constant of integration is in this integral, so the general solution has 
the form 

x 1(t) = xp(t) + cu− (t). 

Another lovely feature of linear equations is that the constant of integration 
in the solution of a linear equation always appears right there. 

The associated homogeneous equation is

.

x + px = 0. � 

This is separable, with solution x t  e− p t( ) = ( ) dt
h . Look! This is the recipro­

cal of the integrating factor! Wonderful! 

In most applications, u−1(t) falls off to zero as t gets large; the term 
cu−1(t) is a transient. 

Chao: That’s a lot of integration. I’m more interested in the general be­
havior of solutions, rather than an incomprehensible expression of them as 
integrals or a boring expression of them in terms of sin, cos, and exponen­
tials. 

� � 

� � 

I prefer arguments like this: take an equation like

. 2
y = y − x. 

This doesn’t have a single solution which you, Linn, in your linear cave, 
have anything to say about. But I can look at the direction field, recognize 
that there is a funnel along the curve y = −

√
x. This means all solutions 

near there are trapped and are asymptotic to −
√

x. I can even argue that 
they are all ultimately a bit larger than −

√
x. No integration involved and 

very good information. 

Or take an equation like the logistic equation 

y 
. 
= k0y 1 − 

y
p 

. 

This is an auotomous equation, and remains so even if I allow a harvest 
rate, even one depending upon y : 

y 
. 
= k0y 1 − 

y
p 

− a(y). 

This equation gives genuine insight into real population dynamics. By 
looking at the phase line it is easy to analyze the behavior of solutions, 
in a way useful for policy makers. 
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Linn: Well, now, most of the time a system is near equilibrium. Engineers 
get very anxious when their systems get too far from equilibrium. Let’s 
look at your nice nonlinear logistic equation. As you said, there’s a critical 
point at y = p, and so an equilbrium solution. Just how does the system 
relax to this equilibrium? 

Let’s write y = p + u and change variables using 

y u
1  =  .

p p 
− −

Substituting this in the logistic equation gives 

2. u u
u = −k0 p 

(p − u) = −k0u + k0 p 
. 

For small u the second term is very small, and can be ignored. This is called 
LINEARIZING!! the equation near equilibrium. Near equilbrium solu­
tions to the nonlinear equation behave a lot like p + u where u is a solution 
to the linear equation . 

u = −k0u. 

So we can say that the population relaxes to equilibrium exponentially, as 
e−k0t approaches 0. 

Chao: There you go again with your fancy exponentials. You think you 
know all about them, but your computer has to compute their values, af­
ter all, and the methods it uses are no different from the methods used to 
compute the values of linear equations. It has to use Euler’s method, or its 
fancier variants. 

Linn: Speaking of fancy exponentials, I’d like to point out that smart peo­
ple almost never use integrating factors to integrate linear equations with 
constant coefficients: . 

x + kx = q(t). (LCC) 

Yeah, the integrating factor is ekt, but even I don’t like the integrals that 
come out. But there are these great tricks, Chao! Suppose q(t) = Bert . 
Then, be optimistic! Maybe there’s an exponential solution of the form 
Aert. When we substitute into the two sides of equation (LCC) we get: .

Left side: x + kx = A(r + k)ert 

Right side: Bert . 
Setting them equal to each other we get: 

Bert = A(k + r)ert 
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Thus, 
B B 

A = and xp(t rt ) = e (ERF)
k + r k + r 

. 
We’ve found a particular solution to x + kx = Bert. Because it is the re­
sponse to exponential input we call this the Exponential Response Formula. 
(ERF) It works as long as k + r is not 0. 

Chao: Bravo. 

Linn: Thank you. And what’s better, did I ever tell you about the complex 
exponential? In the ERF r can be a complex number! Euler told us that 

eiθ = cos(θ) + i sin(θ) 

– it’s a point on the unit circle in the complex plane. So, trig functions are 
incorporated into the complex exponential!! To solve 

. 
x − x = 3 cos(t) 

I replace it by the different equation 

z 
. − z = 3eit 

of which my original DE is the real part. Then I can use the ERF (with 
k = −1, r = i, B = 3) to get 

it e
zp = 3 

(−1 + i). 

Since xp = Re(zp), all that’s left is to find the real part of zp. 

eit −1 − i −3 cos(t) + 3 sin(t) + i(− cos(t) − sin(t)) 
zp = 3 

(−1 + i) −1 − i 
= 

2
. 

Therefore, 
3 3 

xp = Re(zp) = − 
2 

cos(t) + 
2 

sin(t). 

For the general solution we just add in the general solution to the homoge­
neous equation, which is cet. It’s a little funny to call this a transient and I 
don’t, but it does give you the general solution. 
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Chao: You know, your method results in these sums of sines and cosines, 
which is very nice but I want to know what they look like. The nonlinear 
view of sines and cosines writes 

a cos(ωt) + b sin(ωt) = A cos(ωt − φ), 

where A, and φ are the polar coordinates of the point (a, b). 

In your example, A = 3
√

2/2 and φ = 3π/4. So, the solution is easy to 
draw and compare with the input signal. 

I want to point out another charming feature of solutions to many non­. 
linear equations. Take a simple one, for example y = y2. This is separable 
and can be solved in three short steps: 

y−2dy = dx 

−y−1 = x + c 

y = 1/(c − x). 

So the IVP with y(0) = 1 has c = 1 and y = 1/(1 − x). Its graph is 
asymptotic to the vertical line at x = 1. In other words, it is able to go 
off to infinity in finite time. It ends. The equation y = 1/(1 − x) actually 
represents two solutions: one for x < 1, and another for x > 1. If we are 
to say that a solution of a differential equation is determined by an initial 
value, we have to require that the graph be connected. 

Linn: You call that a feature? That never happens to solutions to my equa­
tions. If they are going to go south on me, I know it from the coefficients 
or the input signal. As long as p(t) and q(t) are nice and finite (and r(t) is 
nonzero) so are all solutions. They live as long as I do! 

Chao: Well, the world really is nonlinear. Newton’s law of gravitation is 
highly nonlinear. This kind of explosion actually happens in the case of 
Newton’s laws: Jeff Xia showed that in a certain 5-planet system two of 

sin(1/t)
the planets behaves more or less like , oscillating with increasing 

t 
amplitude and increasing frequency as t → 0 (from the negative side). 

Solutions to linear equations are not nearly as diverse and exciting! 

2. Conclusion 

In both 18.03 classes in spring 2010, Linear won the debate, but Nonlin­
ear’s supporters were more enthusiastic. 

5 



MIT OpenCourseWare
http://ocw.mit.edu 

18.03SC Differential Equations�� 
Fall 2011 �� 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	The Debate
	Conclusion



