
First Order Response to Sinusoidal Input 

1. Introduction 

We are going to solve a first order constant coefficient DE with sinu­
soidal input: . 

x + kx = B cos(ωt). (1) 

Our strategy will be to use Euler’s formula to replace cos(ωt) by the com­
plex exponential eiωt . We call this technique complex replacement. We 
illustrate it with an example and then rework the example in the general 
case. 

2. Illustrative Example 

Solve the ODE . 
x + 2x = 2 cos(2t). (2) 

Solution. We will go through this example very carefully. After sufficient 
practice many of the steps can be done in your head. 

The key is to introduce a new variable y with its own related ODE 
. 
y + 2y = 2 sin(2t). (3) 

Now we combine x and y to make a complex variable z = x + iy. Combin­
ing equations (1) and (3) in the same manner we get 

z 
. 
+ 2z = 2 cos(2t) + 2i sin(2t) = 2e2it . (4) 

We note that x = Re(z), so once we’ve found z(t) we can easily find x(t). 

Equation (4) has exponential input and we know how to solve it: try a 
solution of the form zp(t) = Ae2it. Substituting this into the equation gives 

Left hand side: z
. 

p + 2zp = 2iAe2it + 2Ae2it = (2 + 2i)Ae2it . 
Right hand side: 2e2it . 

Equating the two sides we get 

(2 + 2i)Ae2it = 2e2it A = 1/(1 + i).⇒ 

Thus, zp(t) = e2it/(1 + i). 

The problem asks for x which is the real part of z. We can find x using 
polar or Cartesian coordinates. We will do it both ways. For most students 
using polar coordinates is less familiar. You should therefore learn it well 
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because polar coordinates are easier to interpret and we are generally pref­
ered. The sinusoidal identity can be used to convert one form to the other. 

Polar Coordinates. 
In polar coordinates, 1 + i = 

√
2 eiπ/4. Using this in the formula for zp: 

e2it e2it ei(2t−π/4) 1

zp(t) = 

1 + i 
= √

2eiπ/4 
= √

2 
= √

2 
(cos(2t − π/4) + i sin(2t − π/4)) .


Taking the real part we get 

1 
xp(t) = Re(zp(t)) = √

2 
cos(2t − π/4). 

Finally, as always, we add the homogeneous solution to this to get the gen­
eral solution: 

x(t) = xp(t) + Ce−kt = √1
2 

cos(2t − π/4) + Ce−kt . 

Cartesian Coordinates. 
We use the complex conjugate to handle the denominator: 

e2it cos(2t) + i sin(2t) 1 − i cos(2t) + sin(2t) + i(sin(2t) − cos(2t)) 
zp(t) = 

1 + i 
= 

1 + i 
· 

1 − i 
= 

2
. 

Taking the real part we get 

cos(2t) + sin(2t)
xp(t) = .

2 

Exercise. Use the sinusoidal identity to show that the two solutions given 
in the previous example are, in fact, identical. 

3. General Case 

Solve the ODE . 
x + kx = B cos(ωt). (5) 

(We assume k, ω and B are all positive.) 

Solution. This is really just a matter of replacing the numbers in our illus­
trative example by the letters k, B and ω. We will not write down as much 
as before. If something is unclear you can go to the corresponding part of 
the example above to understand it. 
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Do the complex replacement: 

z 
. 
+ kz = Beiωt , where cos(ωt) = Re(eiωt) and x = Re(z). (6) 

Equation (5) has exponential input, so we try a solution of the form zp(t) = 
Ae2it. Substituting this into the equation gives 

Left hand side: z
. 

p + kzp = iωAeiωt + kAeiωt = (k + iω)Aeiωt . 
Right hand side: Beiωt . 

Equating the two sides we get 

(k + iω)Aeiωt = Beiωt A = B/(k + iω).⇒ 

Thus, zp(t) = Beiωt/(k + iω). In polar coordinates 

k + iω = k2 + ω2 eiφ , where φ = tan−1(ω/k) in the first quadrant. 

(Because tan−1 is ambiguous, e.g tan(π/4) = tan(5π/4) = 1, we fix the 
value of tan−1 by saying which quadrant the complex number is in. In this 
case, since k, ω > 0, k + iω is in the first quadrant. Another way to do this 
would be to write φ = Arg(k + iω).) Thus, 

Beiωt Beiωt Bei(ωt−φ) 
zp(t) = 

k + iω 
= √

k2 + ω2eiφ 
= √

k2 + ω2
. 

Taking the real part we get 

B 
xp(t) = √

k2 + ω2 
cos(ωt − φ). 

Finally, as always, we add the homogeneous solution to this to get the 
general solution: 

x(t) = xp(t) + Ce−kt = √
k2 

B 

+ ω2 
cos(ωt − φ) + Ce−kt . 
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