Finding n-th Roots

To solve linear differential equations with constant coefficients, we need
to be able to find the real and complex roots of polynomial equations.
Though a lot of this is done today with calculators and computers, one
still has to know how to do an important special case by hand: finding the
roots of

' =u,

where « is a complex number, i.e., finding the n-th roots of . Polar repre-
sentation will be a big help in this.

Let’s begin with a special case: the n-th roots of unity: the solutions to
Z' =1

To solve this equation, we use polar representation for both sides, setting
z = re'? on the left, and using all possible polar angles on the right; using
the exponential law to multiply, the above equation then becomes

rie® = 1. =0,41,42, .
Equating the absolute values and the polar angles of the two sides gives
Mm=1, nd = 2krr, k=0,41,42,---,

from which we conclude that

r=1, 9:2’(77[, k=0,1,--- ,n—1. (1)
In the above, we get only the value r = 1, since r must be real and non-
negative. We don’t need any integer values of k other than 0,--- ,n —1,
since they would not produce a complex number different from the above
n numbers. That is, if we add an, an integer multiple of 1, to k, we get the
same complex number:

_ 2(k+an)m

A _ . .
0 ==————"— =6+2ar; and e =, since 2 = (¢¥™)"
n

We conclude from (1) therefore that

the n-th roots of 1 are the numbers ekmiin e —0 ... n—1. 2)

=1
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This shows there are n complex n-th roots of unity. They all lie on the
unit circle in the complex plane, since they have absolute value 1; they are
evenly spaced around the unit circle, starting with the root z = 1; the angle
between two consecutive roots is 27t/n. These facts are illustrated for the
case n = 6 in the figure below

Fig. 1. The six solutions to the equation z® = 1 lie on a unit circle in the
complex plane.

From (2), we get another notation for the roots of unity ( is the Greek
letter “zeta”):

the n-th roots of 1 are 1, (, 72, 0", where? = emi/m, 3)

We now generalize the above to find the n-th roots of an arbitrary com-
plex number w. We begin by writing w in polar form:

w:reig; 0 = Argw, 0 <0 <2,

i.e., 0 is the principal value of the polar angle of w. Then the same reasoning
as we used above shows that if z is an n-th root of w, then

Z'=w=re? so z=YrdOtF0/n k=01, ,n—1. 4)

Comparing this with (3), we see that these n roots can be written in the
suggestive form

Yw =z, 200, 2007, -+, 200", where zo = {/re’?/". )

As a check, we see that all of the n complex numbers in (5) satisfy z" = w :
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(zolH)" = zy i — zf - 1, since {" =1, by (3);
w, by the definition (5) of zg and (4).

Example. Find in Cartesian form all values of a)v1l b)vi

Solution. a) According to (3), the cube roots of 1 are 1, w, and w?, where

1 V3
Tty

: 1
w? = e ¥M/3 = cos(—27m/3) 4 isin(—27/3) = —5 i

w = ™3 = cos(271/3) + isin(27/3) =

o

The greek letter w (“omega”) is traditionally used for this cube root.
Note that for the polar angle of w? we used —277/3 rather than the equiva-
lent angle 47t/3, in order to take advantage of the identities

cos(—x) = cos(x) sin(—x) = —sin(x).

Note that w? = @. Another way to do this problem would be to draw the
position of w? and w on the unit circle and use geometry to figure out their
coordinates.

b) To find V/i, we can use (5). We know that V1=1,i,—1,—i (either by
drawing the unit circle picture or by using (3)). Therefore by (5), we get

Vi = 2o, zoi, —z0, —Zoi, where zg = e™/8 = cos(71/8) + isin(7r/8);
=a+ib,—b+ia,—a—ib,b—ia wherezy = a+ ib = cos(rt/8)+ isin(7r/8).

Example. Solve the equation x® — 2x® +2 = 0.

Solution. Treating this as a quadratic equation in x%, we solve the quadratic

by using the quadratic formula; the two roots are 1 + i and 1 — i (check
this!), so the roots of the original equation satisfy either

¥=1+i or x¥*=1-1i

This reduces the problem to finding the cube roots of the two complex
numbers 1 + i. We begin by writing them in polar form:

141 =274 1—i=+2e T4

(Once again, note the use of the negative polar angle for 1 — i, which is
more convenient for calculations.) The three cube roots of the first of these
are (by (4)),
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V212 = /2 (cos(11/12) 4 isin(71/12))

j 2 3
V2634 = /2 (cos(37/4) + isin(37/4)), since % + ?ﬂ = TT[;

j 2 7

20772 — /3 (cos(77/12) — isin(77/12)), since = — ¢ = — T
12 3 12
The second cube root can also be written as v/2 < —1+ i> —1+i
ube ro =
V2 V2

This gives three of the cube roots. The other three are the cube roots of
1 — i, which may be found by replacing i by —i everywhere (i.e., taking the
complex conjugate).

The cube roots can also be described according to (5) as

6 / 6 — 7Tl
71, 710, Z1w?* and 7y, 70w, zow? where z; = V/2e™/12, 75 = /2712,
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