
Modeling by First Order Linear ODE’s 

1. Introduction 

If we have a DE which models a situation involving a physical quantity 
y(t) then solving the DE means finding the unknown function y. Know­
ing the possible solutions y allows to understand the physical system. Of 
course someone needs to build the DE doing the modeling. In this note we 
will see how to do this for some real systems. 

2. The savings account model 

Modeling a savings account gives a good way to understand the sig­
nificance of many of the features of a general first order linear ordinary 
differential equation. 

Write x(t) for the number of dollars in the account at time t. It accrues 
interest at an interest rate r. The interest rate has units of percent/year. 
The more money in the account the more interest you earn. At the end of 
an interest period of Δt years (e.g. Δt = 1/12, or Δt = 1/365) the bank 
adds r x(t) Δt dollars to your account. This means the change Δx in your · · 
account is 

Δx = rx(t)Δt . 

r has units of (years)−1. Mathematicians and some bankers like to take 
things to the limit. Rewrite our equation as 

Δx 
= rx(t) ,

Δt 

and suppose that the interest period is made to get smaller and smaller. In 
the limit as Δt 0, we get the differential equation → 

. 
x = rx 

One of the beautiful facts about this type of modeling is that it covers 
more complicated situations. In our computation, there was no assumption 
that the interest rate was constant in time; it could well be a function of 
time, r(t). In fact it could have been a function of both time and the existing 
balance, r(x, t). Banks often do make such a dependence—you get a better 
interest rate if you have a bigger bank account. If x is involved, however, 
the equation is what is called nonlinear and we will not consider that case 
in this session. 
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Now suppose we make contributions to this savings account. We’ll 
record this by giving the rate of savings, q. This rate has units dollars per 
year, so if you contribute every month then the monthly payments will be 
q Δt with Δt = 1/12. This payment also adds to your account, so, when we 
divide by Δt and take the limit, we get 

. 
x = rx + q. 

Once again, your rate of payment into the account may not be constant in 
time; we might have a function q(t). Also, we can allow q(t) to be negative, 
which corresponds to withdrawing money from the account. 

What we have, then, is the general first order linear ODE: 
. 
x − r(t)x = q(t). (1) 

3. Linear insulation 

Here is another example of a linear ODE. The linear model here is not 
as precise as in the bank account example. 

A cooler insulates my lunchtime root beer against the warmth of the 
day, but ultimately heat penetrates. Let’s see how you might come up with 
a mathematical model for this process. You can jump right to equation (2) if 
you want, but we would like to spend a some time talking about how one 
might get there, so that you can carry out the analogous process to model 
other situations. 

The first thing to do is to identify relevant parameters and give them 
names. Let’s write t for the time variable, x(t) for the temperature inside 
the cooler, and y(t) for the temperature outside. 

Let’s assume that the insulating properties of the cooler don’t change 
over time. (We’re not going to watch this process for so long that the aging 
of the cooler itself becomes important! ) However, the insulating properties 
probably do depend on the inside and outside temperatures. Insulation 
affects the rate of change of the temperature: the rate of change at time t of 
temperature inside depends upon the temperatures inside and outside at 
time t. This gives us a first order differential equation of the form 

. 
x = F(x, y) 

Now it’s time for the next simplifying assumption, namely that this rate 
of change depends only on the difference y − x between the temperatures, 
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and not on the temperatures themselves. This means that 

. 
x = f (y − x) 

for some function f of one variable. If the temperature inside the cooler 
equals the temperature outside, we expect no change. This means that 
f (0) = 0. 

Now, any reasonable function has a tangent line approximation, and since 
f (0) = 0 we have 

f (z) ≈ kz . 

That is, when |z| is fairly small, f (z) is fairly close to kz. (From calculus you 
know that k = f �(0), but we won’t use that here.) When we replace f (y − x) 
by k(y − x) in the differential equation, we are linearizing the equation. 
We get the ODE . 

x = k(y − x). 

The final assumption we are making, in justifying this last simplification, 
is that we will only use the equation when z = y − x is reasonably small— 
small enough so that the tangent line approximation is reasonably good. 
For large temperature differences the linearized model will not generally 
give realistic results. 

We can write this equation as 

. 
x + kx = ky. (2) 

This is Newton’s law of cooling. 

The constant k is called the coupling constant. It mediates between the 
two temperatures. It will be large if the insulation is poor, and small if it’s 
good. If the insulation is perfect, then k = 0. The factor of k on the right 
might seem odd, but it you can see that it is forced on us by checking units: 
the left hand side is measured in degrees per hour, so k must be measured 
in units of (hours)−1. 

We can see some general features of insulating behavior from this equa­
tion. For example, the times at which the inside and outside temperatures 
coincide are the times at which the inside temperature is at a critical point: 

. 
x(t1) = 0 exactly when x(t1) = y(t1). (3) 
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