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LECTURE 28. REPEATED EIGENVALUES AND THE MATRIX EXPONENTIAL

Repeated eigenvalues. Again, we start with the real n x n system
(28.1) g = Ay.

We say an eigenvalue A\, or A is repeated if it is a multiple root of p4(\). That is, pa(\) has
(A — A\)? as a factor. We suppose that ), is a double root of p4 (), so that in principle two linearly
independent solutions of (28.1) correspond to \.. If ¥y is the corresponding eigenvector, then
i = U, is a solution. The problem is to find the second solution of (28.1), linearly independent
of 7/.. We first discuss an easy case.

Example 28.1 (The complete case). Still supposing that A, is a double root of p4(\), we say A is a
complete eigenvalue if there are two linearly independent eigenvectors corresponding to A, say 03
and v,. Using them, we obtain two linearly independent solutions of (28.1), namely

Gi(t) =eM and  §o(t) = ve!

Let Abe a2 x 2 matrix. If ) is a repeated and complete eigenvalue of A, show that
A0
a=(3 %)

In general, if an eigenvalue A, of A is k-tuply repeated, that is, p4(\) = |A — AI| has the power
(A—X.)* as a factor, but no higher, the eigenvalue is called complete if k linearly independent eigen-
vectors correspond to \.. In this case, these eigenvectors produce £ linearly independent solutions
of (28.1). An important result in linear algebra is that if a real square matrix A is symmetric, that
is, A = AT, then all its eigenvalues are real and complete.

The converse holds true.

However, in general, an eigenvalue of multiplicity £ (> 1) has less than k eigenvectors, and we
cannot construct the general solution from the techniques of eigenvalues.

The matrix exponential. To motivate, the initial value problem

Y =ay, y0)=1

has the solution y(t) = €% in the form of exponential. We want to define the expression e for a
general n x n matrix A, n > 1,so that Y (¢) = et is a solution of
Y =AY, Y(0)=1I
and moreover e is easy to compute.
Recall that if a is a real number then

(at)? P (at)™ L i (at)™

at __
e =1+at+ 51 o



where ¢ € R. A natural way to define the matrix exponential et for an n x n matrix A, seems to
use the series expression

t2A? A" AT
(28.2) R Sy WL I .
2! n! : n!
n=

In order to make sense of the above expression, we first introduce the matrix norm.

Definition 28.2. For an n x n matrix A, define the matrix norm as

4] = sup 22
§#0 1]
where || = [7T§]"/? = (y} + -+ + y2)V/? and | 47| = |(A§)T (AH)[/%
Show that
A+ B < [|A]l + |1 B]], |AB| = [|A[[ | B]], LAl = [¢] | All

for any matrices A, B and for any ¢ € R.

For a matrix-valued function A(t) = (a;;(t));;=;, then A(t) — A(to) means equivalently:

(i) aij(t) — aij(to) ast — tpforall 1 < 4,5 < n.
(i) [[A() — A(to)]| — D as ¢ — fo.

Under the matrix norm, the infinite series (28.2) converges for all A and for all ¢, and it defines
the matrix exponential.
We now compute the derivative of eAt by differentiating the right side of (28.2) term by term

d 4 d t2A? A"
et [ TotA+ I
dt* dt<++2!++n!+
tnflAn
—A+tA+---
+tA+ +(n_1)!+
—Aet.

Al

Moreover, since e0 = [, by definition, the matrix exponential e is a solution of

Y =AY, Y(0) =1
Theorem 28.3. Let Y (t) be a fundamental matrix of A. Then Y (t) = Y (0)e“.

For several classes of A, the infinite series in (28.2) can be summed up exactly.

1. Show that exp(diag (A1 ... \,)) = diag (e ... e*n).

) _ {0 1 a (0t
2. Showthat1fA—<0 O) then e —<0 O>'

Prove the exponential law
(28.3) Bt — At Bt i AB = BA.
We use (28.3) to compute the matrix exponentials of more matrices.

2 1

Example 28.4. Let A = <0 9

). We write A = B + C, where

p=(3) = 0)



Since BC = CB, by the results from the previous exercise and by (28.3)
2t
At _ [ € 0 1t 2 1 ¢
‘ _<0 th) (0 1)‘6 (0 1)'

Finding the fundamental matrix. In general, it doesn’t seem possible to express e in closed
form. Nevertheless, we can find n independent vectors for which et can be computed exactly.
The idea is to write

A

eAtU _ e(A—)\I)te)\It,l—)» _ G(A_Al)te)\tg.

If (A — A\I)™7 = 0 for some integer m > 0, then (A — )™+ = 0 for all integers [ > 0. Hence,
tmfl

eAADG — G4 (A = AT+ - + W(A — ALy
is a finite sum, and
tm—l
Aty = N <17—|— tA—= AT+ -+ W(A — )\I)m117>
m — .

can be computed exactly, although e itself cannot be computed.

Example 28.5. Solve the system Y’ = AY, where

A:

S O =
O = =
N OO

SOLUTION. Its characteristic polynomial is p4(\) = (1 — A)%(2 — \), and it has a double root A = 1
and a simple root A = 2.
If A\ =1, then

(A— AT = 7=0

O OO
S O =
= o O

1
has a solution #; = | 0 |. Furthermore, it is the only eigenvector for A = 1 up to a constant
0
multiple. (In fact, the well-known result from linear algebra tells us that the solution space of
the above linear system of equations has dimension 1. ) One solution of the system Y’ = AY is

1
obtained and 7 (t) = ¢' | 0
0
To find the second solution associated to A = 1, we compute
0 0 0
(A=XD)?F=10 0 0|7=0
0 01
0
has a nontrivial solution ¥ = | 1 |, linearly independent to v;. On the other hand, (A — I)¥> # 0.
0

Thus,
t
My =T+ t(A-D) =€ | 1],
0



and it gives an additional solution of the system Y’ = AY associated to A = 1.
Finally, if A\ = 2 then

-1 -1 0
(A—2D5=|0 -1 0]|7=0
0 0 O
0 0
has a solution 3 = [ 0 |. Hence, #3(t) = e [ 0
1 1

The general solution of the system Y’ = AY can be written as
Y (t) = (c1 + tea)elvi + caelvy + c3e?tvs.
It is analogous to that for the scalar differential equations with multiple roots.
We conclude the lecture by the following important result in linear algebra.

Theorem 28.6 (Cayley-Hamilton Theorem). Any square matrix A satisfies p(A) = 0, where p is the
characteristic polynomial of A.

Proof. Recall the formula

adj (A—XI)- (A= X)) =pMI.
Both sides are polynomial expressions for A € R. We view them as matrix polynomials, that is to
say, we replace A by a matrix. By setting A = A then proves the assertion. O





