MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

LECTURE 27. COMPLEX SOLUTIONS AND THE FUNDAMENTAL MATRIX

Complex eigenvalues. We continue studying
(27.1) 7' = Ay,

where A = (a;j) is a constant n x n matrix. In this subsection, further, A is a real matrix. When A
has a complex eigenvalue, it yields a complex solution of (27.1). The following principle of equating
real parts then allows us to construct real solutions of (27.1) from the complex solution.

Lemma 27.1. If §(t) = a(t) + if(t), where G(t) and 3(t) are real vector-valued functions, is a complex
solution of (27.1), then both &(t) and (3(t) are real solutions of (27.1).

The proof is nearly the same as that for the scalar equation, and it is omitted.

If a real matrix A has an eigenvalue A with an eigenvector ¥, then show that A also has
an eigenvalue A with an eigenvector .
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Example 27.2. We continue studying A = < 1 1). Recall that p4(\) = ‘ 41—

41 'has two

complex eigenvalues 1 + 2i.

If/\—l—i—Zi,thenA—)\I_(

__%f _12l) has an eigenvector <21@> The result of the above

. 1. . . .
exercise then ensures that <—2i is an eigenvector of the eigenvalue A = 1 — 2i.

In order to find real solutions of (27.1), we write

(1+2i)t 1 _ it cos 2t .t sin 2¢
¢ (m) ¢ <2$in2t T\ 2cos2t)

The above lemma then asserts that e (—(;OssiitQ t) and ¢! (282282; t) are real solutions of (27.1).

Moreover, they are linearly independent. Therefore, the general real solution of (27.1) is
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The fundamental matrix. The linear operator Ty := /' — Ay has a natural extension from vectors

to matrices. For example, when n = 2, let
T (912> _ <91> '
Y22 g2

yi1\ _ (f1
s (3/21> B (fz) ’

Then,
T yin Y12\ _ i 5
Y21 Y22 2 92)°
In general, if Aisann x n matrixand Y = (y1 --- y») is an n x n matrix, whose j-th column is y;,
then

TY =T(yr - yn) = (Ty1 -+ Tyn).
In this sense, ¥’ = Ay extends to Y/ = AY.



Show that
TU+V)=TU+TV, T(UC)=(TU)C, T(UG) = (TU)c,

where U, V are n x n matrix-valued functions, C' is an n x n matrix, and ¢is a column vector.

That means, T is a linear operator defined on the class of matrix-valued functions Y differen-
tiable on an interval I. The following existence and uniqueness result is standard.

Existence and Uniqueness result. . If A(¢) and F(¢) are continuous and bounded (matrix-valued
functions) on an interval ¢y € I, then for any matrix Y then initial value problem

Y' = At)Y + F(t), Y(to) = Yo

has a unique solutionon ¢t € 1.

Working assumption. A(t), F'(t), and f(t) are always continuous and bounded on an interval
tel.

Definition 27.3. A fundamental matrix of TY = 0 is a solution U (t) for which |U(to)| # 0 at some
point £.

We note that the condition |U()| # 0 implies that |U(t)| # 0 for all t € I. We use this fact to
derive solution formulas.
As an application of U(t), we obtain solution formulas for the initial value problem

—

§' = AWF+f0, ) = 7.
Let U(t) be a fundamental matrix of Y’/ = A(¢)Y. In the homogeneous case of Ft) =0, let
y(t) = U(t)¢, where ¢is an arbitrary column vector. Then,
g'=U'c=(At)U)é= At)(Ue) = A(t)7,

that is, y is a solution of the homogeneous system. The initial condition then determines ¢ and
&= U""(to)7o- B

Next, for a general f(t), we use the variation of parameters by seting (t) = U(t)v(t), where ¢
is a vector-valued function. Then,

7' = (UD) = UG+ UG = AQ)UG+ UG’ = A(t)j + UG’
Hence, Uy’ = f(t) and

—

y(t) = U(t)/Ul(t)f(t) dt.

Liouville’s equation. We prove a theorem of Liouville, which generalizes Abel’s identity for the
Wronskian.

Theorem 27.4 (Liouville’s Theorem). If Y'(t) = A(t)Y (t) on an interval t € I, then
(27.2) Y ()| = trA()|Y (¢)].
Proof. First, if |Y (tg)| = 0 at a point ty € I, then |Y(¢)] = 0 for all t € I, and we are done. We

therefore assume that |Y'(¢)| # 0 for all ¢ € I.
Let Y (tg) = I ata point ¢y. That is,

Y(to) = (y1(to) -+ yn(to)) = (E1 B -+ Ep).

Here, E; are the unit coordinate vectors in R"”, that is, the n-vector E; has 1 in the j-th position
and zero otherwise.



We use the derivative formula for the determinant
d
V(O = det(ya () .y (1))

=det(yi(t) y2(t) -+ yn(t)) +det(yo(t) va(t) -+ yn(t)) + -+ +det(yo(t) -+ 4 (t)).
This formula is based on the Laplace expansion formula for determinant, and we do not prove it
here. Since
y:(to) = A(to)y;(to) = A(to) E; = Aj(to),
where A;(t) is the jth column of A(t), evaluating the above determinant formula at ¢ = ¢y, we
obtain

Y (to)|" = det(A1(to) Ea -+ Eyn) +det(Ey Ag(to) -+ En) + -+ det(Ey By --- Ay(to))
= a1 (to) + agz(to) + -4+ am(tg) = tI'A(tO).

Thus, (27.2) holds at ¢g.
In general, let C = Y (to) . Then U(t) = Y (t)C satisfies

U =AU, Ulto) = 1.
Therefore, by the argument above |U (to)|" = trA(to)|U(to)| = trA(to). Since

Lavmen = Lavalon = Yo, att=t,

it follows that trA(to) = |Y (to)|'|Y (to)| L. Since ¢ is arbitrary, the proof is complete. O





