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LECTURE 26. EIGENVALUES AND EIGENVECTORS 

We study the system 

(26.1) �y � = A�y, 

where A = (aij ) is a constant n × n matrix. 
When n = 1, the above system reduces to the scalar equation y� = ay, and it has solutions of the 

form ceat. For n � 2, similarly, we try solutions of the form �veλt, where �v ∈ Rn and λ ∈ C. Then, 
(26.1) becomes 

λ�ve λt = A�ve λt . 

Subsequently, 

(26.2) A�v = λ�v, (A − λI)�v = 0. 

In order to find a solution (26.1) in the form of �veλt we want to find a nonzero vector �v and 
λ ∈ C satisfying (26.2). It leads to the following useful notions in linear algebra. 

Definition 26.1. A nonzero vector �v satisfying (26.2) is called an eigenvector of A with the eigenvalue 
λ(∈ C). 

These words are hybrids of English and German, and they follow German usage, “ei” rhymes 
with π. 

We recognize that (26.2) is a linear system of equations for �v. A well-known result from linear 
algebra is that it has a nontrivial solution �v if and only if A − λI is singular. That is, pA(λ) = 
|A − λI| = 0, where pA(λ) is the characteristic polynomial of A. In this case, such a nontrivial 
solution �v is an eigenvector and the corresponding root of pA(λ) = 0 is an eigenvalue. 

Plane systems. For a 2 × 2 matrix A = 
a11 a12 , the characteristic polynomial is 
a21 a22 

p(λ) =
 = λ2 − (tr A)λ + det A.

a11 − λ a12 

a21 a22 − λ 

This quadratic polynomial has two roots, λ1 and λ2 (not necessarily distinct). Let �v1 and �v2 be the 
eigenvectors corresponding to the eigenvalues λ1 and λ2, respectively. By definition, �v1e

λ1t and 
�v2e

λ2t are solutions of (26.1). 
If λ1 �= λ2, then the functions �v1e

λ1t and �v2e
λ2t are linearly independent. Hence, they form a 

basis of solutions of (26.1).The general solution of (26.1) is given as 

�y(t) = c1�v1e λ1t + c2�v2e λ2t , 

where c1, c2 are arbitrary constants. This shows one use of eigenvalues in the study of (26.1). 
Let us define 2 × 2 matrices


V = (�v1 �v2) and Λ = diag (λ1, λ2) = 
λ
0 
1 

λ
0 
2 

. 

One can verify that AV = V Λ. If �v1 and �v2 are linearly independent, so that |V | �= 0, then we can 
make the (non-singular) change of variables 

�x = V −1�y. 
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Then, (26.1) is transformed into �x � = Λ�x, that is 

x�1 = λ1x1, 

x�2 = λ2x2. 

That is, �x solves a decoupled system. The solution of this system is immediate and x1 = c1e
λ1t , 

x2 = c2e
λ2t . The new variables �x is called the canonical variables, and Λ = V −1AV is called the 

diagonalization. This is another use of eigenvalues. Canonical variables play a major role i engi­
neering, economics, mechanics, and indeed in all fields that makes intensive use of linear systems 
with constant coefficients. 

Lemma 26.2. If the eigenvalues of a 2 × 2 matrix are distinct, then the corresponding eigenvectors are 
linearly independent. 

Proof. Suppose that the eigenvalues λ1 =� λ2, but the eignevectors satisfy 

(26.3) c1�v1 + c2�v2 = 0.


We want to show that c1 = c2 = 0. Applying the matrix A to (26.3), we obtain that


(26.4) c1λ1�v1 + c2λ2�v2 = 0. 

Subtraction then yields 
c1(λ2 − λ1)�v1 = 0. 

This implies c1 = 0. Then, (26.3) implies c2 = 0. 

12 5Example 26.3. We consider A = −6 1 
. 

Its characteristic polynomial is p(λ) = λ2 − 13λ + 42 = (λ − 6)(λ − 7), and A has two distinct 
eigenvalues, λ1 = 6 and λ2 �= 7. � � � 

6 5 5If λ1 = 6, then A − 6I = , and is an eigenvector.
�−6 −5� �−6�

5 5 1If λ2 = 7, then A − 7I = −6 −6 

, and −1 
is an eigenvector. The general solution of (26.1) 

is, thus, � � � � 

y(t) = c1e 6t 5 + c2e 7t 1 
. −6 −1 

The canonical variable is �x = 

� 
5 1 

�−1 � 
y1 

� 

= 

� 
−y1 − y2 

� 

. −6 −1 y2 6y1 + 5y2 

6 1Exercises. 1. Show that A = has only one eigenvalue λ = 7, and the only corresponding � � −1 8 
1eigenvector is . In this case, we can’t construct the general solution of (26.1) from this. 1 

1 12. Show that A = 1 
has two (complex) eigenvalues 1 ± 2i and the corresponding eigen­� � −4 

1vectors , respectively. They leads to the general (complex) solution of (26.1) ±2i 

c1e
(1+2i)t 1 + c2e

(1−2i)t 1 
.2i −2i 
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Higher-dimensional systems. If A is an n × n matrix, where n � 1 is an integer, then 

pA(λ) = |A − λI|
is a polynomial in λ of degree n and has n roots, not necessarily distinct. That means, A has n 
eigenvalues λ1, . . . , λn, not necessarily distinct. Let �v1, . . . , �vn be the eigenvectors corresponding 
to λ1, . . . , λn, respectively. Let 

V = (�v1 �vn) and Λ = diag (λ1, . . . , λn).· · · 
By definition, �v1e

λ1t, . . . , �vneλnt are solutions of (26.1). 
If |V | = 0� , that means, if �v1, . . . , �vn are linearly independent, then they form a basis of solutions 

of (26.1). Moreover, �x = V −1�y is a canonical variable and �x � = Λ�x. In many cases, the vectors �vj 

can be chosen linearly independent even if λj are not all distinct. Sometimes the condition |V | = 0 �
is met by the following. 

Lemma 26.4. If eigenvalues λ1, . . . , λn are distinct, then the corresponding eigenvectors �v1, . . . , �vn are 
linearly independent. 

Proof. Suppose not. Let m > 1 be the minimal number of vectors that are linearly dependent. 
Without loss of generality, we assume that �v1, . . . , �vm are linearly dependent, so that 

(26.5) c1�v1 + c2�v2 + + cm�vm = 0 · · · 
and some cj is nonzero. We further assume that c2 = 0� . 

We now proceed similarly to Lemma 26.2. Applying A to (26.5) we obtain 

c1λ1�v1 + c2λ2�v2 + + cmλm�vm = 0.· · · 
Multiplying by λ1 then 

c1λ1�v1 + c2λ1�v2 + + cmλ1�vm = 0.· · · 
Thus, we have 

c2(λ2 − λ1)�v2 + + cm(λm − λ1)�vm = 0.· · · 
Since �v2, . . . , �vm are linearly independent, c2 = = cm = 0 must hold. A contradiction then · · · 
proves the assertion. � 

We recall that if A = AT then the square matrix A is called symmetric. If a complex matrix 
satisfies A = A∗, where A∗ denotes the conjugate transpose or adjoint of A, then A is called 
Hermitian. A symmetric or a Hermitian matrix has many important properties pertaining to the 
study of (26.1) via eigenvalues. 

(1) All eigenvalues of a symmetric matrix are real and eigenvalues of A corresponding to differ­
ent eignevalues are orthogonal. 

Proof. Let 
A�u = λ�u, A�v = ν�v, 

�u,�v = 0 � and λ =� µ. Then, 
T � T AT �u = ¯ T ��u T A�u = λ�u u, �u λ�u u. 

Since A = AT , it implies that λ = λ̄. The second assertion is left as an exercise. � 

(2) A has n linearly independent eigenvectors (regardless of the multiplicity of eigenvalues). 

An immediate consequence of (1) and (2) is the following. 

(3) If eigenvalues are simple (multiplicity = 1) then the corresponding eigenvectors are orthog­
onal. 
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