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LECTURE 26. EIGENVALUES AND EIGENVECTORS

We study the system
(26.1) y' = Ay,

where A = (a;;) is a constant n x n matrix.

When n = 1, the above system reduces to the scalar equation y' = ay, and it has solutions of the
form ce®. For n > 2, similarly, we try solutions of the form e, where 7 € R™ and \ € C. Then,
(26.1) becomes

AveM = Aie.
Subsequently,
(26.2) AV = AU, (A—X)v=0.

In order to find a solution (26.1) in the form of 7e* we want to find a nonzero vector @ and
A € C satisfying (26.2). It leads to the following useful notions in linear algebra.

Definition 26.1. A nonzero vector v satisfying (26.2) is called an eigenvector of A with the eigenvalue
Ae C).

These words are hybrids of English and German, and they follow German usage, “ei” rhymes
with 7.

We recognize that (26.2) is a linear system of equations for ¢. A well-known result from linear
algebra is that it has a nontrivial solution ¢ if and only if A — AI is singular. That is, pa(\) =
|A — M| = 0, where p4(\) is the characteristic polynomial of A. In this case, such a nontrivial
solution ¥/ is an eigenvector and the corresponding root of p4(A) = 0 is an eigenvalue.
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Plane systems. For a 2 x 2 matrix A = (

p(\) = = A2 — (tr A)X + det A.

a1 azx — A

ail — A a2 ‘

This quadratic polynomial has two roots, A\; and A\ (not necessarily distinct). Let ¢; and 7> be the
eigenvectors corresponding to the eigenvalues \; and )y, respectively. By definition, e’ and
Tpe?t are solutions of (26.1).

If \i # )y, then the functions #;eM? and #he?2t are linearly independent. Hence, they form a

basis of solutions of (26.1).The general solution of (26.1) is given as

37(75) = 612716)\1t -+ 021726/\2t,

where ¢y, co are arbitrary constants. This shows one use of eigenvalues in the study of (26.1).
Let us define 2 x 2 matrices
o T (M0
V= (1 v2) and A =diag(\i,)\2) = (0 )\2> .

One can verify that AV = VA. If ¥} and ¥; are linearly independent, so that |V'| # 0, then we can
make the (non-singular) change of variables

z=V"1y.



Then, (26.1) is transformed into ' = AZ, that is

z] = Nz,

x’Q = \oZ9.
That is, & solves a decoupled system. The solution of this system is immediate and z; = creMt,
29 = c9e™2t. The new variables 7 is called the canonical variables, and A = V1AV is called the
diagonalization. This is another use of eigenvalues. Canonical variables play a major role i engi-
neering, economics, mechanics, and indeed in all fields that makes intensive use of linear systems
with constant coefficients.

Lemma 26.2. If the eigenvalues of a 2 x 2 matrix are distinct, then the corresponding eigenvectors are
linearly independent.

Proof. Suppose that the eigenvalues \; # Ay, but the eignevectors satisfy
(26.3) c1U1 + ety = 0.
We want to show that ¢; = ca = 0. Applying the matrix A to (26.3), we obtain that
(26.4) c1A\1U1 + ca Aot = 0.
Subtraction then yields
c1(A2 — A1)th = 0.
This implies ¢; = 0. Then, (26.3) implies ¢ = 0.

Example 26.3. We consider A = <i26 ?)

Its characteristic polynomial is p(A) = A% — 13X + 42 = (A — 6)(\A — 7), and A has two distinct
eigenvalues, \; = 6and Xy = 7.
If \{ =6,then A — 6] = <_66 _55> ,and (—56> is an eigenvector.
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y(t) = 1€ (_56) + cge’ <_11> .
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If \o="7,then A—-7I = < >, and (_11> is an eigenvector. The general solution of (26.1)

is, thus,
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1. Show that A = <_1 3

> has only one eigenvalue A = 7, and the only corresponding
eigenvector is G) . In this case, we can’t construct the general solution of (26.1) from this.

2. Show that A = ( 1 1) has two (complex) eigenvalues 1 £ 2¢ and the corresponding eigen-
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vectors

j:2i> , respectively. They leads to the general (complex) solution of (26.1)

(1420t (1 (1-2it [ 1
cie <2z> + coe (—2i> .



Higher-dimensional systems. If A is an n x n matrix, where n > 1 is an integer, then
pa(A) = |A = N|

is a polynomial in A of degree n and has n roots, not necessarily distinct. That means, A has n
eigenvalues A1, ..., \,, not necessarily distinct. Let ¥, ..., v, be the eigenvectors corresponding
to A1, ..., Ay, respectively. Let

V=0 --1t) and A=diag(A,...,\n).

At An

By definition, 7 e, . .., #,e*! are solutions of (26.1).

If |V| # 0, that means, if 71, . . ., U, are linearly independent, then they form a basis of solutions
of (26.1). Moreover, = V1§ is a canonical variable and #’ = AZ. In many cases, the vectors ¥;
can be chosen linearly independent even if \; are not all distinct. Sometimes the condition |V| # 0
is met by the following.

Lemma 26.4. If eigenvalues A1, ..., \, are distinct, then the corresponding eigenvectors vy, . .., Uy are
linearly independent.

Proof. Suppose not. Let m > 1 be the minimal number of vectors that are linearly dependent.
Without loss of generality, we assume that 1, . . ., U, are linearly dependent, so that

(26.5) 101 + Vg + -+ + Uy = 0
and some c; is nonzero. We further assume that c, # 0.
We now proceed similarly to Lemma 26.2. Applying A to (26.5) we obtain

AU F C2XoT2 + -+ + Cr AU = 0.
Multiplying by A; then

MU + o\ T2 + -+ + AU = 0.
Thus, we have

CQ(>\2 — )\1)772 + -+ Cm()\m — )\1)17m = O.

Since vy, ..., Uy, are linearly independent, co = --- = ¢, = 0 must hold. A contradiction then
proves the assertion. g

We recall that if A = AT then the square matrix A is called symmetric. If a complex matrix
satisfies A = A*, where A* denotes the conjugate transpose or adjoint of A, then A is called
Hermitian. A symmetric or a Hermitian matrix has many important properties pertaining to the
study of (26.1) via eigenvalues.

(1) All eigenvalues of a symmetric matrix are real and eigenvalues of A corresponding to differ-
ent eignevalues are orthogonal.

Proof. Let
At = )\, AT =07,
i,V # 0and A # p. Then,
il Ad = \il4, i’ ATq = i’
Since A = AT it implies that A = \. The second assertion is left as an exercise. O

(2) A has n linearly independent eigenvectors (regardless of the multiplicity of eigenvalues).
An immediate consequence of (1) and (2) is the following.

(3) If eigenvalues are simple (multiplicity = 1) then the corresponding eigenvectors are orthog-
onal.





