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LECTURE 14. STABILITY 

The notion of stability. Roughly speaking, a system is called stable if its long-term behavior does 
not depend on significantly the initial conditions. 

An important result of mechanics is that a system of masses attached in (damped or undamped) 
springs is stable. A similar result is in network theory. In these notes, we study the differential 
equation of the form 

(14.1) y�� + py� + qy = f(t), 

where p, q are constatnts and f(t) represents the external forces. 
We learned that the general solution of (14.1) has the form 

(14.2) y = c1y1 + c2y2 + yp, 

where c1, c2 are arbitrary constants and yp is a particular solution of (14.1); c1y1 + c2y2 is the 
complementary solution, that is, the general solutions of the homogeneous equation (14.1) with 
f(t) = 0. 

The initial conditions determine the values of c1 and c2. Thus, we say the system (14.1) is stable 
if c1y1 + c2y2 → 0 as t →∞ for any coice of c1 and c2. 

If (14.1) is stable then yp is called the steady-state solution and c1y1 + c2y2 is called transient. 
Physically, in a stable system, the output is the sum of a transient term, which depends on the 
initial conditions, but whose effects die out over time, and a steady-state, which represents the 
response of the system to the input f(t) after a long time. 

Stability conditions. We study under what circumstances the differential equation Ly = f , where 

(14.3) L = Dn + p1D
n−1 + ......... + pn−1D + pn,


where pj are constants, is stable. 

Definition 14.1. The differential equation Ly = f , where L is given in (14.3) is called: 
(i) asymptotically stable if every solution of Ly = 0 tends to zero as t →∞; 

(ii) stable if every solution of Ly = 0 remains bounded a t →∞; 
(iii) unstable if it is not stable. 

We note that stability concerns only the behavior of the solutions of the corresponding homo­
geneous equation Ly = 0. 

When f(t) = 0, then a steady-state solution is y ≡ 0. In this case, the system is stable if small 
initial departures from the steady-state remain small with the lapse of time. 

By definition, Ly = f is asymptotically stable if every basis solution of Ly = 0 tends to zero 
as t → ∞ and it is stable if the basis solutions remain bounded. In view of the characteristic 
polynomial of L and the fundamental theorem of algebra, we write 

L = (D − λ1)k1 (D − λ2)k2 (D − λm)km ,· · · 
where λj ∈ C are all distinct and k1 + k2 + ...... + km = n. 

Exercise. The general solution of the homogeneous equation Ly = 0 is given by 

y(t) = c1(t)e λ1t + c2(t)e λ2t ...... + cm(t)e λmt , 

1 



���������


���������


where cj (t) is an arbritary polynomial of degree kj − 1. 

Exercise. If r is a nonnegative integer and λ ∈ C, show that 

lim |tr e λt| = 0 if Reλ < 0. 
t→∞ 

Therefore, Ly = f is asymptotically stable if Reλj < 0 for all j, and it is stable if Reλj < 0 or 
Reλj = 0 and kj = 1. 

We summarize the result. 

Theorem 14.2. The differential equation Ly = f is asymptotically stable if every root of the characteristic 
polynomial of L has a negative real part, and it is stable if every multiple root has a negative real part and 
no simple root has a positive real part. 

Example 14.3. We consider the second-order differential equation 

(14.4) y�� + py� + qy = 0, p, q are constants. 

We recall that the discriminant Δ = p2 − 4q tells us about the nature of the solutions, and hence 
about the stability of (14.4) 

If q < 0 then Δ > 0 and the characteristic polynomial λ2 +pλ+q has two real roots with opposite 
signs. Therefore, (14.4) is unstable. 

If p < 0 then at least one root of the characteristic polynomial must have a positive real part. 
Hence, (14.4) is unstable. 

If p = 0 and q > 0, then (14.4) reduces to y�� + qy = 0 with q > 0. Hence, it is stable but 
asymptotically stable. 

Finally, let p > 0 and q > 0. If Δ � 0 then the roots of the characteristic polynomial have 
negative real parts, and (14.4) is asymptotically stable. If Δ > 0 then Δ = p2 − 4q < p2 and thus √

Δ < p. Therefore, (14.4) is asymptotically stable. 

In summary, (14.4) is asymptotically stable if and only if p > 0 and q > 0, and stable if and only 
if p � 0 and q > 0. 

Stability of higher-order differential equations. The above example phrases the stability crite­
rion for (14.4) in terms of the coefficients of the equation. This is convenient since it does not 
require one to calculate the roots of the characteristic polynomial. 

For higher-order equations, 

(14.5) y(n) + p1y
(n−1) + + pn−1y

� + pny = 0, pj are constants, · · · 

it is not too hard to show that if (14.5) is asymptotically stable then pj > 0 for all j (Exercise). 
But, the converse is not true (Exercise). For the implication of a criterion for coefficients of (14.5) 
for stability, the coefficients must satisfy a more complicated set of inequalities, which we state 
without proof in the following. 

Routh-Hurwitz Criterion for Stability. The differential equation (14.5) is asymptotically stable if 
and only if in the determinant 

p1 1 0 0 ... 0 
p3 p2 p1 1 ... 0 
. . . . . . . . . . . . . . . . . . 

p2n−1 p2n−2 pn· · · · · · · · · 

,
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where pk = 0 if k > n, all of its n principal minors, that is, the subdeterminants in the upper left 
corner having sizes respectively 1, 2, . . . , n,


p1 1 0 
p1, 

p1 1 
p3 p2 

,
 p3 p2 p1 

p5 p4 p3 

, . . .


are positive. 

Exercise. We consider 
(D4 + 2D3 + 6D2 + 5D + 2)y = 260 sin 2t. 

(a) Find a particular solution. (Answer. 11 cos 2t − 3 sin 2t.) 

(b) Show that the corresponding characteristic polynomial is factorized as 

p(λ) = (λ2 + 3λ + 2)(λ2 + λ + 1), 

and hence the zeros have negative real parts. 

(c) Show that the determinant

4 1 0 0 
5 6 4 1 
0 0 0 2 

satisfies the Routh-Hurwitz criterion.
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