MIT OpenCourseWare
http://ocw.mit.edu

18.034 Honors Differential Equations
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


http://ocw.mit.edu
http://ocw.mit.edu/terms

LECTURE 14. STABILITY

The notion of stability. Roughly speaking, a system is called stable if its long-term behavior does
not depend on significantly the initial conditions.

An important result of mechanics is that a system of masses attached in (damped or undamped)
springs is stable. A similar result is in network theory. In these notes, we study the differential
equation of the form

(14.1) Y +py +aqy = f(1),

where p, g are constatnts and f(¢) represents the external forces.
We learned that the general solution of (14.1) has the form

(14.2) Yy =c1y1 + Y2 + Yp,

where c;, ¢y are arbitrary constants and y, is a particular solution of (14.1); ciy1 + cay2 is the
complementary solution, that is, the general solutions of the homogeneous equation (14.1) with
f(t)=0.

The initial conditions determine the values of ¢; and c;. Thus, we say the system (14.1) is stable
if c1y1 + coy2 — 0 as t — oo for any coice of ¢; and c;.

If (14.1) is stable then y,, is called the steady-state solution and ciy1 + cayo is called transient.
Physically, in a stable system, the output is the sum of a transient term, which depends on the
initial conditions, but whose effects die out over time, and a steady-state, which represents the
response of the system to the input f(t) after a long time.

Stability conditions. We study under what circumstances the differential equation Ly = f, where
(14.3) L=D"4+p D" '+ ... + Pp_1D + pp,
where p; are constants, is stable.

Definition 14.1. The differential equation Ly = f, where L is given in (14.3) is called:

(i) asymptotically stable if every solution of Ly = 0 tends to zero as t — oo;
(ii) stable if every solution of Ly = 0 remains bounded a ¢t — oo;
(iii) unstable if it is not stable.

We note that stability concerns only the behavior of the solutions of the corresponding homo-
geneous equation Ly = 0.

When f(t) = 0, then a steady-state solution is y = 0. In this case, the system is stable if small
initial departures from the steady-state remain small with the lapse of time.

By definition, Ly = f is asymptotically stable if every basis solution of Ly = 0 tends to zero
as t — oo and it is stable if the basis solutions remain bounded. In view of the characteristic
polynomial of L and the fundamental theorem of algebra, we write

L=(D—-X)"(D—=X)"- (D= Ap)km,
where \; € C are all distinct and k1 + ko + ... + Kk, = n.

. The general solution of the homogeneous equation Ly = 0 is given by

y(t) = c1(t)eMt + co(t)e ... + em(t)eMmt,



where c;(t) is an arbritary polynomial of degree k; — 1.

. If r is a nonnegative integer and A € C, show that

lim [t"eM| =0  if Rel<O0.
t—o00

Therefore, Ly = f is asymptotically stable if Re\; < 0 for all j, and it is stable if ReA; < 0 or
Re); =0and k; = 1.
We summarize the result.

Theorem 14.2. The differential equation Ly = f is asymptotically stable if every root of the characteristic
polynomial of L has a negative real part, and it is stable if every multiple root has a negative real part and
no simple root has a positive real part.

Example 14.3. We consider the second-order differential equation
(14.4) v +py +qy=0, p, q are constants.

We recall that the discriminant A = p? — 4q tells us about the nature of the solutions, and hence
about the stability of (14.4)

If ¢ < 0then A > 0 and the characteristic polynomial A\2+p)+q has two real roots with opposite
signs. Therefore, (14.4) is unstable.

If p < 0 then at least one root of the characteristic polynomial must have a positive real part.
Hence, (14.4) is unstable.

If p = 0and g > 0, then (14.4) reduces to ¥ + qy = 0 with ¢ > 0. Hence, it is stable but
asymptotically stable.

Finally, let p > 0 and ¢ > 0. If A < 0 then the roots of the characteristic polynomial have
negative real parts, and (14.4) is asymptotically stable. If A > 0 then A = p? — 4¢g < p* and thus
VA < p. Therefore, (14.4) is asymptotically stable.

In summary, (14.4) is asymptotically stable if and only if p > 0 and ¢ > 0, and stable if and only
ifp>0andq > 0.

Stability of higher-order differential equations. The above example phrases the stability crite-
rion for (14.4) in terms of the coefficients of the equation. This is convenient since it does not
require one to calculate the roots of the characteristic polynomial.

For higher-order equations,

(14.5) y™ 4y 4y Py =0, p; are constants,

it is not too hard to show that if (14.5) is asymptotically stable then p; > 0 for all j (Exercise).
But, the converse is not true (Exercise). For the implication of a criterion for coefficients of (14.5)
for stability, the coefficients must satisfy a more complicated set of inequalities, which we state
without proof in the following.

Routh-Hurwitz Criterion for Stability. The differential equation (14.5) is asymptotically stable if
and only if in the determinant
n 1 0 0 .. 0
p3 p2 pp 1 ... 0

Poan—1 Pon—2 o Dp



where p;, = 0if £ > n, all of its n principal minors, that is, the subdeterminants in the upper left
corner having sizes respectively 1,2,...,n,

1 0
o1 b1
p1, p3 pol’ p3s p2 Dpiy,
b5 P4 D3

are positive.

. We consider
(D* +2D® 4+ 6D? + 5D + 2)y = 260 sin 2t.
(a) Find a particular solution. (Answer. 11 cos 2t — 3 sin 2t.)

(b) Show that the corresponding characteristic polynomial is factorized as
p(A) =N +3N+2)(AN2 + A+ 1),

and hence the zeros have negative real parts.

(c) Show that the determinant

S Ot
S Oy
S = O
N = O

satisfies the Routh-Hurwitz criterion.





