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LECTURE 13. INHOMOGENEOUS EQUATIONS

We discuss various techniques for solving inhomogeneous linear differential equations.

Variation of parameters: the Lagrange procedure. Let us consider the linear second-order differ-
ential operator

(13.1) Ly =y" +p(t)y +q(t)y

with variable coefficients.

If a nonvanishing solution of a homogeneous equation Ly = 0 is known, then the corresponding
inhomogeneous equation Ly = f can be solved, in general, by two integrations. It was discovered
by Lagrange that if two linearly independent solutions of Ly = 0 are known, then the inhomoge-
neous equation Ly = f can be solved by a single integration.

Let v and v be a pair of linearly independent solutions of Ly = 0, and form the expression

(13.2) Yy = au + bv.

If @ and b are constant, this represents the general solution of Ly = 0. We will the inhomogeneous
equation Ly = f by choosing a trial solution of this form, but with a and b functions of ¢, rather
than constants. The method is called the method of variation of parameters.

Let a and b are differentiable functions of ¢. By differentiation,

Y = (au + ') + (a'u+ b'v).
We require
(13.3) du+bv=0
so that ¢ = au’ + bv'. This simplifies the calculation of the second derivative, and
y' = (au” +b0") + (a'u' +"0).
Therefore,
Ly=19y"+py +qy=alu+bLv+du +bv =du +bv.

The second equality uses that Lu = Lv = 0.
Solving Ly = f in the form in (13.2) then reduces to the linear system

au+bv=0,
a/lu/ _"_ b/vl — f'7
in the unknown ¢’ and ¥'. In the matrix form,
u v\ (ad\ (0
u )\ )\ f)

By Cramers rule, we solve the system, and

0 v u 0
! /
, | f ;W f
a = , b= .
U v u v
u v u v




Here, the notation |- | stands for the determinant of the matrix. The denominator is the Wromskian
W (u,v), so that we may write them as

o = i b — Ju
W(u,v)’ W(u,v)
Finally, by integration, we obtain the Lagange formula
B —fu / fu
(13.4) y(t) = u(t) W 0) dt + v(t) W o)

Lagrange’s procedure extends to equations of order n and it represents an important advance
in the theory of differential equations.

A similar idea already appeared. For example, when studying the linear first-order differential
equations, we replaced the homogeneous solution ce!” by ve®”, where v is a function.

Example 13.1. Consider the Euler equation
(13.5) 2y — 2wy + 2y =2 f(x), x>0,

where the prime denotes the differentiation in the z-variable.
By the technique discussed in the previous lecture, we compute

u=ux, v =a? W(u,v) = 22.
For x > 0, we write (13.5) as
2 2
1" / .
y' =y Sy = f).

Then Lagrange’s formula (13.4) gives

x) :—x/f(x)dx—i-ﬁ/f:i‘;)

If f(x) = 2™, where m is a constant, in the above example, show that a particular
solution of (13.5) is

—xlogx if m=—1,
2o ifm=0
o) = {7 Lo e ifm =0
_ otherwise.
m(m+ 1)

The general solution of (13.5) is y(t) = c12 + c22? + y,(z).

The Green’s function: initial value problems. As an important application of the formula (13.4)
we can find an integral representation of the initial value problem for Ly = f, where L is given in
(13.1).

Let ¢o be a point on the interval I. Integrating (13.4) from ¢, to ¢,

PR 4 [P

y(t) :U(t) ’ W ) W(t’) '
el — ut)
‘/ L) @

This function satisfies the conditions

y(to) =0,  ¢(to) =0.



—f()o(t')

Indeed, y(t) = a(t)u(t) + b(t)v(t) and y'(t) = a(t)u'(t) 4+ b(t)v'(t) where a(t) = W) dt' and
b(t) = Wdt’.

In summary, the function defined as

vt = | GO, a<t,t'>:u?t(gi?((ii:3583%

solves the initial value problem,
Ly =, y(to) =0, y'(to) = 0.
The function G(t, ") is called the Green’s function.
Example 13.2. We continue studying the Euler equation (13.5) satisfying the initial conditions
y(zo) = 0,9 (29) =0 for some x¢ > 0.
The solution has an integral representation

y(x) = Jr/x(m — t)fit)dt.

0

For example, if f(z) = = sinz then

x
y(x) = a:/ (x —t)sintdt = z(x — x¢) coszg — x(sinx — sin xp).
o

(The Green'’s function: boundary value problem) We consider the boundary value prob-
lem
v +p0y +q()y = f(t) on(ty,ta),  y(ta) =y(t2) = 0.
If v and v are linearly independent solutions of the homogeneous equation y” + py’ + gy = 0, then
show that the solution of the boundary value problem is given by
to

y(t) = | G, t)f(t)at,
t1
/
ug/)v/(t) ift, <t <t
where G(t',t) = (t )/
M ift <t <t
W t,) S X L2

The method of annihilators. We introduce another method of finding a particular solution of
linear inhomogeneous differential equation with constant coefficients. Let

Ly =y"™ + piy™ Y+ 4 pacry + pay,

where p; are real constants. We study the differential equation Ly = f, where f is a sum of
functions of type
e, t" et sin vt, t"et cos vt.
Note that these functions arise as basis solutions of linear homogeneous differential equations
with constant coefficients. We find a differential operator A satisfies Af = 0, then we reduce
solving Ly = f to solving the homogeneous equation LAy = 0. Such an operator A is called an
annihilator of f.
We illustrate with an example.



Example 13.3. We consider the differential equation
(13.6) Y — 5y — 6y = te'.
Let L = D? —5D — 6 = (D — 2)(D — 3). Then (13.6) is written as Ly = te'.

By the exponential shift law for D, we recognize that te' is a solution of the differential equation
(D — 1)y = 0. In other words, (D — 1)? is an annihilator of te!. Applying (D — 1)? in (13.6), we
obtain the homogeneous differential equation

(D —2)(D —3)(D —1)%*y = 0.

It is easy to see that e!, te!, €2, ¢3! form a basis of solutions of the above equation. Hence, we set
a solution of (13.6) as
y(t) = cre! + cote’ + c3e?t + g3t
and determine the constants c;.
Since Le?' = 0 and Le3' = 0, moreover, we may set c3 = ¢4 = 0. Hence,

y(t) = cre’ + cotel.

We compute
Ly = (D? = 5D — 6)(cie’ + cotel) = (2¢1 — 3ca)e! + 2catel = tel
to obtain ¢; = 3/4 and cp = 1/2. Therefore, a particular solution of (13.6) is y(t) = 3/4e’ + 1/2te.





