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LECTURE 13. INHOMOGENEOUS EQUATIONS 

We discuss various techniques for solving inhomogeneous linear differential equations. 

Variation of parameters: the Lagrange procedure. Let us consider the linear second-order differ­
ential operator 

(13.1) Ly = y�� + p(t)y� + q(t)y 

with variable coefficients. 
If a nonvanishing solution of a homogeneous equation Ly = 0 is known, then the corresponding 

inhomogeneous equation Ly = f can be solved, in general, by two integrations. It was discovered 
by Lagrange that if two linearly independent solutions of Ly = 0 are known, then the inhomoge­
neous equation Ly = f can be solved by a single integration. 

Let u and v be a pair of linearly independent solutions of Ly = 0, and form the expression 

(13.2) y = au + bv. 

If a and b are constant, this represents the general solution of Ly = 0. We will the inhomogeneous 
equation Ly = f by choosing a trial solution of this form, but with a and b functions of t, rather 
than constants. The method is called the method of variation of parameters. 

Let a and b are differentiable functions of t. By differentiation, 

y� = (au� + bv�) + (a�u + b�v). 

We require 

(13.3) a�u + b�v = 0 

so that y� = au� + bv�. This simplifies the calculation of the second derivative, and 

y�� = (au�� + bv��) + (a�u� + b�v�). 

Therefore, 
Ly = y�� + py� + qy = aLu + bLv + a�u� + b�v� = a�u� + b�v�. 

The second equality uses that Lu = Lv = 0. 
Solving Ly = f in the form in (13.2) then reduces to the linear system 

a�u + b�v = 0, 

a��u� + b�v� = f, 

in the unknown a� and b�. In the matrix form, � �

u v a� 0 = . 
u� v� b� f 

By Cramers rule, we solve the system, and 

0 v 0
u

u� f


a� =

f v� 

u v 
u� v� 

,
 b� =

u v

u� v� 

.
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Here, the notation | · | stands for the determinant of the matrix. The denominator is the Wromskian 
W (u, v), so that we may write them as 

a� = 
−fv 

, b� = 
fu 

. 
W (u, v) W (u, v)

Finally, by integration, we obtain the Lagange formula 

(13.4) y(t) = u(t) 
−fv 

dt + v(t) 
fu 

dt. 
W (u, v) W (u, v)

Lagrange’s procedure extends to equations of order n and it represents an important advance 
in the theory of differential equations. 

A similar idea already appeared. For example, when studying the linear first-order differential 
equations, we replaced the homogeneous solution ceP by veP , where v is a function. 

Example 13.1. Consider the Euler equation 

(13.5) x 2 y�� − 2xy� + 2y = x 2f(x), x > 0, 

where the prime denotes the differentiation in the x-variable. 
By the technique discussed in the previous lecture, we compute 

u = x, v = x 2 , W (u, v) = x 2 . 

For x > 0, we write (13.5) as 
2 2 

y�� − y� + y = f(x).
2x x

Then Lagrange’s formula (13.4) gives 

f(x)

2x

.
y(x) = −x f(x)dx + x 2 

Exercise. If f(x) = xm, where m is a constant, in the above example, show that a particular 
solution of (13.5) is


yp(x) = 

⎧⎪⎪⎪⎨ ⎪⎪⎪⎩


−x log x if m = −1, 

x2 log x if m = 0, 
m+2x

otherwise. 
m(m + 1) 

The general solution of (13.5) is y(t) = c1x + c2x
2 + yp(x). 

The Green’s function: initial value problems. As an important application of the formula (13.4) 
we can find an integral representation of the initial value problem for Ly = f , where L is given in 
(13.1). 

Let t0 be a point on the interval I . Integrating (13.4) from t0 to t, 
t −f(t�)v(t�) t f(t�)u(t�) 

y(t) =u(t)
 dt� + v(t) dt� 
W (t�)t0 t0 

W (t�) 
t u(t�)v(t) − u(t)v(t�) 

f(t�)dt�=

u(t�)v�(t�) − u�(t�)v(t�)t0 

This function satisfies the conditions 

y(t0) = 0, y�(t0) = 0. 
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Indeed, y(t) = a(t)u(t) + b(t)v(t) and y�(t) = a(t)u�(t) + b(t)v�(t) where a(t) = 
−f

W 
(t�

(
)
t

v
�)
(t�)

dt� and 

f(t�)u(t�)
b(t) = dt�. 

W (t�) 
In summary, the function defined as 

t 

G(t, t�)f(t�)dt�, G(t, t�) = 
u(t�)v(t) − u(t)v(t�) 

y(t) =

u(t�)v�(t�) − u�(t�)v(t�)t0 

solves the initial value problem, 

Ly = f, y(t0) = 0, y�(t0) = 0. 

The function G(t, t�) is called the Green’s function. 

Example 13.2. We continue studying the Euler equation (13.5) satisfying the initial conditions 

y(x0) = 0, y�(x0) = 0 for some x0 > 0. 

The solution has an integral representation 
x f(t) 

y(x) = x (x − t)
 dt.

x0 

For example, if f(x) = x sin x then 

t


x 

y(x) = x (x − t) sin tdt = x(x − x0) cos x0 − x(sin x − sin x0). 
x0 

Exercise. (The Green’s function: boundary value problem) We consider the boundary value prob­
lem 

y�� + p(t)y� + q(t)y = f(t) on (t1, t2), y(t1) = y(t2) = 0. 
If u and v are linearly independent solutions of the homogeneous equation y�� + py� + qy = 0, then 
show that the solution of the boundary value problem is given by 

t2 

y(t) = 
t1 

G(t�, t)f(t�)dt�, 

u(t�)v(t) 
W (t�) 

u(t)v(t�) 
W (t�) 

if t1 � t� � t, 

if t � t� � t2. 
where G(t�, t) = 

⎧ ⎪⎪⎨ ⎪⎪⎩


The method of annihilators. We introduce another method of finding a particular solution of 
linear inhomogeneous differential equation with constant coefficients. Let 

Ly = y(n) + p1y
(n−1) + + pn−1y

� + pny,· · · 
where pj are real constants. We study the differential equation Ly = f , where f is a sum of 
functions of type 

tr e λt , tr eµt sin νt, tr eµt cos νt. 

Note that these functions arise as basis solutions of linear homogeneous differential equations 
with constant coefficients. We find a differential operator A satisfies Af = 0, then we reduce 
solving Ly = f to solving the homogeneous equation LAy = 0. Such an operator A is called an 
annihilator of f . 

We illustrate with an example. 

Lecture 13 3 18.034 Spring 2009 



Example 13.3. We consider the differential equation 

(13.6) y�� − 5y� − 6y = tet . 

Let L = D2 − 5D − 6 = (D − 2)(D − 3). Then (13.6) is written as Ly = tet . 
By the exponential shift law for D, we recognize that tet is a solution of the differential equation 

(D − 1)2y = 0. In other words, (D − 1)2 is an annihilator of tet. Applying (D − 1)2 in (13.6), we 
obtain the homogeneous differential equation 

(D − 2)(D − 3)(D − 1)2 y = 0. 

It is easy to see that et, tet, e2t, e3t form a basis of solutions of the above equation. Hence, we set 
a solution of (13.6) as 

y(t) = c1e t + c2te
t + c3e 2t + c4e 3t , 

and determine the constants cj . 
Since Le2t = 0 and Le3t = 0, moreover, we may set c3 = c4 = 0. Hence, 

y(t) = c1e t + c2te
t . 

We compute 
Ly = (D2 − 5D − 6)(c1e t + c2te

t) = (2c1 − 3c2)e t + 2c2te
t = tet 

to obtain c1 = 3/4 and c2 = 1/2. Therefore, a particular solution of (13.6) is y(t) = 3/4et + 1/2tet . 
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