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UNIT III: HIGHER-ORDER LINEAR EQUATIONS 

We give a comprehensive development of the theory of linear differential equations with con­
stant coefficients. We use the operator calculus to deduce the existence and uniqueness. We 
presents techniques for finding a complete solution of the inhomogeneous equation from solu­
tions of the homogeneous equation. We also give qualitative results on asymptotic stability. 

LECTURE 11. HIGHER-ORDER LINEAR EQUATIONS 

The n-th order linear differential equation with constant coefficient is 

(11.1) Ly = y(n) + p1y
(n−1) + + pn−1y

� + pny = f(t),· · · 

where y(k) = 
dky 

is the k-th derivative of y with respect to t, and pj are real or complex constants, 
dtk 

f(t) is a continuous function on an interval I . The letter L stands for the (homogeneous) differen­
tial operator. It is easy to see that L : Cn(I) C(I) is linear, where Ck(I) is the space of functions →
differentiable k times on I . 

As for the second-order equations treated in Unit II, the principle of superposition and the principle 
of the complementary solution apply to (11.1). 

Principle of Superposition. If Lu = 0 and Lv = 0, where L is given in (11.1), then L(c1u+c2v) = 0 
for any constants c1 and c2. 

Principle of the Complementary Solution. If u is a particular solution of Lu = f , where L is 
given in (11.1), and if v is any solution of Lv = 0, then L(u + v) = f and every solution of Ly = f 
can be obtained this way. 

Therefore, the general solution of (11.1) is given as 

y = yp + yh, 

where yp is a particular solution of (11.1) and yh is a solution of the corresponding homogeneous 
equation 

(11.2) Ly = y(n) + p1y
(n−1) + + pn−1y

� + pny = 0.· · · 

The characteristic polynomial. We try y(t) = eλt , λ ∈ C, as a solution of the homogeneous equa­
dk 

tion (11.2). Since (e λt) = λkeλt, the substitution yields 
dtk 

Leλt = (λn + p1λ
n−1 + + pn−1λ + pn)e λt = 0.· · · 

Moreover, since eλt is never zero, Leλt = 0 if and only if λ is a root of the characteristic polynomial 

(11.3) pL(λ) = λn + p1λ
n−1 + ........... + pn−1λ + pn.


of L. 
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Example 11.1. We recall the results for the second-order equation 

(11.4) Ly = y�� + py� + qy, 

where p , q are constants. The roots of the characteristic polynomial are 

λ = 
−p ±

√
Δ 

, Δ = p 2 − 4q. 
2 

If p2 > 4q then y = eλt with the above λ are solutions of Ly = 0. 

We will show how the exponential substitution y = eλt applies to solve the general differential 
equations of all order (11.2). 

The operator calculus. The study of linear differential equations become easier if we introduce 
an abstract symbol D = d/dt for the operation of differentiation. A word of caution. The symbol 
d is used for differentials. e.g., D(t3) = 3t2, but d(t3) = 3t2dt. 

As an operator, D is linear. That is, 

D(u + v) = Du + Dv, D(cu) = cDu 

for all differentiable functions u, v and for any constant c. 
We now list some properties of D. By definition, 

dk 

D0 = id, Dk = k = 1, 2, . . . . 
dtk 

Moreover, 

(11.5) Dj Dk = Dj+k , (Dj )k = Djk, j, k = 1, 2, . . . . 

The proof is left as an exercise. 
With the notation D, we may write the differential operator in (11.2) as 

Ly = (Dn + p1D
n−1 + + pn−1D + pn)y. · · · 

Then, it can be recognized that the first factor of the right side is pL(D), the characteristic polyno­
mial pL evaluated, formally, at D. In this sense, we say L = pL(D). 

Linear operators with constant coefficients are permutable, in the sense of the following. 

Lemma 11.2. If p(D) = aj D
j and q(D) = bkD

k are two linear differential operator, where aj , bk 

are constants. then, � 
p(D)q(D) = q(D)p(D) = aj bkD

j+k . 

The proof uses (11.5) and it is left as an exercise. 

Remark 11.3. The above lemma is not true of linear operators with variable coefficients. For exam­
ple, 

D(tf) = (tf)� = tf � + f = (tD + id)f, 

where f is a differentiable function of t. In other words, Dt = tD + id. 

In many applications, one takes trial solutions of the form eλtu where λ ∈ C and u is a function 
with a certain degree of smoothness. Thus, it is useful to know how such a function works with 
the operator D. 

Lemma 11.4 (The Exponential Shift Laws). If p is a polynomial and λ is a constant, then 

p(D)(e λtf) = e λt p(D + λ)f. 

Lecture 11 2 18.034 Spring 2009 



� 

�

Proof. By the rule for differentiation, 

D(e λtf) = e λtDf + λeλt = e λt(D + λ)f. 

Hence, 
(D − a)(e λtf) = e λt(D − a + λ)f 

for any constant a. Then, by induction, 

(11.6) (D − a)k(e λtf) = e λt(D − a + λ)kf. 

Finally, by the fundamental theorem of calculus, any polynomial p can be factorized as


p(D) = (D − a1)k1 (D − a2)k2 (D − am)km ,
· · · 

where aj ∈ C are roots of the polynomial and kj � 1 are the corresponding multiplicity. The 
assertion then follows by Lemma 11.2 and (11.6). � 

As a consequence, moreover, we have 

(D − λ)(e λtf) = e λtDf, (D − λ)k(e λtf) = e λtDkf. 

Exercise. If a is not a root of the polynomial p , then show that 

ate
b(t) = 

p(a) 

is a particular solution of the differential equation p(D)y = eat . 

We now present our main result. 

Theorem 11.5. If λ is a (complex) root of multiplicity k of the characteristic polynomial p(λ) = λn +∗ 

p1λ
n−1 + + pn−1λ + pn of the linear differential operator p(D) with constant coefficients, then the · · · 

functions treλ∗t, where r = 0, 1, . . . , k − 1, are solution of p(D)y = 0. 

Proof. By the exponential shift law, it follows that 

r r(D − λ )k(t e λ∗t) = e λ∗tDkt = 0 ∗

for r = 0, 1, . . . , k − 1. 
On the other hand, p(λ) must contain the factor (λ − λ )k, and hence ∗

p(D) = (D − λ )k q(D), q(D) = (D − λj )kj .∗
λj =λ 

Finally, by Lemma 11.2 

p(D)(tr e λ∗t) = q(D)(D − λ )k(tr e λ∗t) = 0.∗

This completes the proof. � 

Corollary 11.6. If 

p(λ) = (λ − λ1)k1 (λ − λ2)k2 (λ − λm)km · 

then the functions treλj t , where r = 0, 1, 2, . . . , λj−1 and j = 1, 2, . . . ,m, are solutions of the differential 
equation p(D)y = 0. 
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Complex solutions. An interesting feature of the analysis via the operator calculus is that many 
problems are best solved by the use of complex-valued functions, even when the coefficients are 
real, e.g. (11.4) when p2 < 4q. 

Theorem 11.5 holds whether the coefficients pj of p(D)y = 0 are real or complex. In fact, al­
though t is interpreted as real (in particular in the discussion of stability) the operator calculus 
and the solutions constructed with it apply equally well to functions of the complex variable. But, 
when the coefficients pj are real, then we may obtain a stronger conclusion. 

We recall that the complex roots of a polynomial come in pair, µ ± iν, µ, ν ∈ R. We also recall 
the complex exponential eµ±iν = eµ(cos ν ± iν). 

Lemma 11.7 (Principle of Equating Real Parts). If a complex-valued function y(t) = u(t)+iv(t), where 
u and v are real-valued functions, satisfies the differential equation (11.2) with real coefficients, then u(t) 
and v(t), the real and imaginary parts of y, both satisfy (11.2). 

Proof. Let Ly = L(u + iv) = 0. Since the coefficients of L are real, taking the complex conjugate 
we have Ly = L(u − iv) = 0. Then, by linearity, 

u = 
y + y 

and v = 
y − y 

2 2i 
both satisfy (11.2). � 

It holds true for differential equations with real-variable coefficients. 

Corollary 11.8. Each pair of complex roots µ ± iν, µ, ν ∈ R, of multiplicity k of the polynomial p gives 
real solutions treut cos νt , treut sin νt, where r = 0, 1, . . . , k − 1, of the differential equation p(D)y = 0. 
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