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LECTURE 8. UNIQUENESS AND THE WRONSKIAN.

Differential inequality and uniqueness. We prove the uniqueness theorem for linear second-
order differential equations with variable coefficients.

Theorem 8.1 (Uniqueness Theorem). If p(t) and q(t) are continuous on an open interval I containing
to, then at most one solution of

(8.1) v+ o)y +at)y = f()
on I satisfies the initial conditions y(to) = yo and y'(to) = y1.

Proof. Lety; and y, be any two solutions of (8.1) which satisfy the initial conditions. Let v = y; —ys.
Then,

(8.2) V' +p(t)' +q(t)v=0 onl and wv(ty) ='(t) = 0.

We shall show that v(t) = 0 forall ¢ € I.
We consider the function E(t) = v? + (v/(t))?. It is readily seen that E(¢) > 0 and E(ty) = 0. By
differentiating, we obtain

E'(t) =2v(t)v' (1) + 20'(8)0" (1) = 20/ () (v(t) + 0" (1))
=20'(t)(v(t) = p()v'(£) — a(t)o(t))
== 2p(t)('(1))* +2(1 — q())v (D' (2).
The second equality uses (8.2). By the Cauchy-Schwartz inequality, then
(1= q@®)o()'(t) < (1 + gD () + (1)),
whence
E'(t) < (1+ [q(®))v*(t) + (1 + ()] + 2lp()) (' (1)* < KE(t),

where K > 1+ I?alx(]q(tﬂ + 2|p(t)|) is a constant.
€

We claim that E(t) = 0 for all ¢ € I. Suppose, on the contrary, that E(t;) > 0 at some point ¢;.
Assume t1 > tg. The other case can be treated similarly. We compute

d

S(eRUE(D) = e NYE' (1) - KEB(1) < 0.

Hence, e X! E(t) is a decreasing function of ¢. In particular,
e_KtlE(tl) < e_KtOE(tO) =0.
However, E(t1) < 0, which leads to a contradiction. This completes the proof. O

The above method applies to a broad class of linear and nonlinear differential equations. It
applies when y is a complex solution and when p(¢) and ¢(¢) are merely bounded.



The Wronskian. The Wronskian™ of two differentiable functions v and v is, by definition,

o) = v @) — o)

We write W (t) or W (u,v) to emphasize dependence on ¢ or on the functions.
In the study of a linear differential equation

(8.4) y' +p@)y +alt)y =0,
where p, ¢ are continuous, the Wronskian can be computed easily by the following result.

(8.3) W(u,v;t) =

Theorem 8.2. (Abel’s identity') Let u and v be solutions of (8.4), then the Wronskian W (u, v; t) satisfies
the first-order differential equation

(8.5) W'+ p(t)W = 0.

Consequently,

W (u,v;t) = W (u, v, to) exp < /t:p(s)ds> .

Proof. By differentiating W’ (u,v) = uwv” — «”v. The assertion follows upon substituting «” and v"”
by (8.4) and by cancellation. O

Corollary 8.3. The Wronskian of two solutions of (8.4) is either identically positive, identically negative
or identically zero.

The Wronskian and linear dependence. A collection of functions uy, - - - , u,, is called linearly in-
dependent on the interval I if

caur(t)+ -+ cpup(t) =0ont el implies ¢i=co=--=¢, =0.
It is called linearly dependent otherwise. If u and v are linearly dependent, then v and v are propor-

tional.
The Wronskian gives a simple criterion for linear dependence.

Lemma 8.4. Let u and v be differentiable functions on an interval 1.

(i) If wand v are linearly dependent, then W (u,v;t) =0 forall t € I.
(ii) If W(u,v;t) =0on I and v # 0, then u and v are linearly dependent.

The condition W (u,v) = 0 on an interval, in general, does not ensure that v and v are linearly
dependent. For example, W (¢3,[t|3) = 0 but ¢> and |¢|® are linearly independent on any open
interval containing zero.

If v and v are solutions of a linear second-order differential equation, then a stronger result than
(ii) in the above lemma holds true.

Theorem 8.5. Let u and v be solutions of (8.4), where p, q are continuous functions on an interval 1.
If W (u,v;tg) = 0 at some point ty € I, then u and v are linearly dependent and hence W (u,v;t) = 0
forallt € I. If wand v are linearly independent then W (u, v;t) = 0 at no point of I.

Proof. If W (u,v;tg) = 0 then two vectors (u(tp), v (t9) and (v(t),v'(to)) are linearly dependent.
Hence, one can choose ¢; and ¢s, both cannot be zero, such that

Clu(tg)-f-Cg’U(to) =0,
Clu/(to)—}—CQ’Ul(to) =0.

It is named after the Polish mathematician J6zef Hoene-Wroriski. He introduced determinants of this form in 1811.
TDiscovered by the Norvegian mathematician Hentik Abel in 1826



We consider the function y(t) = cju(t) + cov(t). Since y is a linear combination of u and v,
it solves (8.4). Moreover, it satisfies the initial condition y(t9) = y'(t9) = 0. By the uniqueness
theorem, then, y(t) = 0 for all ¢ € I. That means, u and v are proportional on I, and it proves the
first assertion. The second assertion then is an obvious consequence of the first. O

The fact that (8.4) has no singular points is vital in the above theorem. For example, t* and 3
are linearly independent solutions of the differential equation

t2y" — Aty + 6y = 0.

But, W (t2,t3) = t* vanishes at t = 0.
The Wronskian has an interesting application of finding a basis of solutions and a particular
solution of a linear second-order differential equation.

Theorem 8.6. Let u be a non-vanishing solution of the differential equation (8.4).
(i) The second solution v of (8.4), independent of u, is given by

—P(t)
(8.6) v(t) = cu(t) / EUQW’ c#0,

where P(t) = [ p(t)dt.
(ii) a particular solution of the inhomogeneous equation

v +p(t)y +at)y = f(¢)
is given by w = uz, where

(ePu?2) = uel' f, P(t) = /p(t)dt.

Proof. (i) We compute

(3>/ w' —u'v  W(u,v)
5 .

2
u u u
The assertion then follows upon integration and the use of the Abel’s identity.

(ii) Substituting w = uz into the equation, we obtain
u” + (2u +pu) = f.

This is a first-order linear differential equation for 2. It is straightforward to compute the integrat-
ing factor ue”’. Multiplying the above equation by the factor,

Pl + e (Quu + pu?)z = uel f.
This proves the assertion. 0
Example 8.7. The trial solution y = t™ shows that the equation
(8.7) t2y" — 13ty + 49y = 0, t>0

has a solution u = t”. To find a second solution, linearly independent of u, we compute

-1
pi)= =", P()=-13logt, 0=

The above theorem then gives
v = t7/t13t14dt =t"logt.
The general solution to (8.7) is therefore
t"(c1 + cologt),

where ¢y, ¢y are arbitrary constants.



Next, we consider the inhomogeneous equation

t2y" — 13ty + 49y = 2 £ (1), t>0,

or
13 49
V' =y my =), t>0.
Take u = t7, and by the above theorem the particular solution is w = uz, where
1
== Mdt.
t t6
For example, if f(t) =", then
tm+2

wit) = m_pzp MO

5t7(log t)?, m = 5.





