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LECTURE 2. FUNDAMENTAL PRINCIPLES 

Linearity. A (differential) operator L is said linear if 

(2.1) L(c1u + c2v) = c1Lu + c2Lv 

for all scalars c1, c2 and for all members u, v in the domain of L. For example, the differential 
operator, defined by Ly = y� + p(x)y is linear, where p(x) is defined on an open interval I and the 
domain of L consists of differentiable functions on I . 

The importance of linear operators lies in the following. 

Principle of Superposition. If L is a linear operator, then Lu = f and Lv = g implies 

L(c1u + c2v) = c1f + c2g. 

The proof is immediate and it is left as an exercise. The principle of superposition has applica­
tion in the study of linear differential equations. 

Example 2.1. Let 
Ly = y�� + y. 

It is obvious that L(sin x) = 0 and L(cos x) = 0. Then, the principle of superposition show that 
y(x) = c1 sin x + c2 cos x satisfies Ly = 0 for any constants c1, c2. Thus, we obtain a two-parameter 
family of solutions of y�� + y = 0. 

Example 2.2. Let 
Ly = y� − 2y. 

By inspection, 
L(1) = −2, L(e 5x) = 3e 5x , L(e 2x) = 0. 

then, the principle of superposition show that y = −4+2e5x +ce2x is a solution of y� −2y = 8+6e5x 

for any constant c. 

Exercise. (Principle of the Complementary Solution.) Let L be a linear operator. If u is a particular 
solution of Ly = f and if v is a solution of Ly = 0, then show that y = u + v satisfies Ly = f . 

Existence and uniqueness. When a problem from physics or engineering is formulated into a set 
of differential equations, demanded are that a solution should exist and that it should be unique. 
They are the subjects of existence and uniqueness, respectively. The difference between two issues 
is: an existence result asserts that there is at least one solution while a uniqueness result asserts 
that there is at most one solution. 

While existence theory is not slighted in this course, many differential equations are easy to 
solve on computers with approximate solutions accurate to (say) 3-5 decimal digits. (For special 
classes of differential equations which one can solve explicitly, existence issue is settled then and 
there.) On the other hand, uniqueness is a theoretical issue and it can be studied only by means of 
analytical proofs. 

To put this in perspective, let us study a physical system described by 

y�� + y = 0, y(0) = 0, y�(0) = 1. 
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It is easily seen that y(x) = sin x is a solution; the issue of existence is settled. This particular 
solution describes an oscillatory behavior, and it is tempted to say that the system describes an 
oscillatory motion. But, with the uniqueness issue in doubt, we cannot make such a conclusion. 

Uniqueness indeed fails. Let us consider 

y�� + y = 0, y(0) = 0 = y(π). 

Again, y(x) = sin x is a solution, and the existence is a trivial matter. But, y(x) = A sin(kx) is a 
solution for any A ∈ R and k ∈ Z. There are infinitely many solutions, therefore. This system 
consists of the simple second-order linear differential equation, same as one in above and two 
simple side conditions. In fact, the system describes small oscillations of a plucked string, and it 
is a perfectly good physical system. 

We give another example of failure of uniqueness. 

Example 2.3. Let us consider the differential equation 

(2.2) y� = 3y 2/3 . 

It is straightforward that y(x) = (x − c)3 is a solution of the differential equation for any c. But, 
there are other solutions. Indeed, y(x) = 0 is also a solution of (2.2). Moreover, 

y(x) =


⎧ ⎪⎨ ⎪⎩


(x − a)3 for x < a, 

0 for
 a � x < b


(x − b)3 for x � b 

is a solution of (2.2) for any a < b, sketched below.


Figure 2.1. Solutions of (2.2). 

Hence, (2.2) has a two-parameter family of solutions, depending on a and b. 

Failure of uniqueness is not always a bad news. A point where a presumably unique solution 
branches into multiple solutions is called bifurcation point. At such points, the system experiences 
a sudden change in qualitative behavior. Bifurcation is a special kind of failure of uniqueness and 
it has significance in applications. e.g. consider 

(2.3) y� = (a − c)y − by3 , b > 0.


Here, we view b and c as fixed and a as a parameter. If a < c, then y = 0 is the only stationary

=
0, there are two more
solution of the differential equation. But, if a > c, then in addition to y 

stationary solutions y = ± (a − c)/b. In other words, at a = c there bifurcate nontrivial stationary 
solutions from a line of trivial stationary solution. In this case, a = c is a bifurcation point. 

We now present a basic uniqueness theorem. 
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Theorem 2.4 (A Uniqueness Theorem). If f(y) is a continuously differentiable and bounded in a rectan­
gular region R in the (x, y)-plane, and if, in addition, f � is bounded in R, then for any point (x0, y0) ∈ R, 
the differential equation 

y� = f(y) 

has at most one solution satisfying y(x0) = y0. 

The proof is presented later with more generality. 

Remark. If f(y) = 3y2/3 then f �(y) = 2y−1/3 is unbounded on a region containing zero, and it does 
not violate the theorem. 

Exercise. Show that the solution curves of (2.2) and y(0) = 0 fill up entirely the region between 
the curve y = x3 and the x-axis. That is, for any point (x0, y0) in this region, there is a solution of 
(2.2) satisfying y(x0) = y0. 

Qualitative behavior. The equation dy/dx = f(y) gives the slope of a solution y = φ(x) at any 
point of the curve, even before solving the equation, and it gives a qualitative behavior of the 
system. 

Let us consider the differential equation 

(2.4) 
dy 

= (y − 1)(y − 2)(y − 4) ≡ f(y). 
dx 

The graph of f(y) is give below. 

Figure 2.3. Graph of f(y). 

It is readily seen that (2.4) has the stationary solutions y = 1, 2, 4. At these stationary solutions, 
f(y) = 0 and hence dy/dx = 0. Therefore, the solution curves are horizontal. 

Now, we study the behavior of nonstationary solutions of (2.4) in terms of the sign of f(y). If 
y < 1, then f(y) is negative, and the solutions are increasing functions. That means, solutions 
move away from y = 1. Similarly, if 1 < y < 2 then f(y) is positive, and solutions move away 
from y = 1 and move towards y = 2. If 2 < y < 4 solutions move towards y = 2 and move away 
from y = 4. Finally, if 4 < y then solutions move away from y = 4. For these reasons, we say 
the stationary solution y = 2 is stable and y = 1, 4 are unstable. The behavior of solution curves is 
sketched in the figure below. 
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Figure 2.4. Qualitative behavior of (2.4). 

Here, we rely on the intuitive definitions of stability/instability. The rigorous definitions of 
stability/instability will be given later. 

Let us consider a more complicated example 
dy 

= (y + 1)3 y 4(y − 2)7(y − 3)5(y − 5)8 ≡ g(y). 
dx 

The graph of g(y) and its sign are indicated in the figure below. 

Figure 2.5. Graph of g(y) and its change of sign. 

By the same argument that we used before we say the stationary solutions y = −1, 3 are unstable 
while y = 2 is stable. We say the stationary solutions y = 0, 5 are semi-stable. For, on one side of 
y = 0 or y = 5, the adjacent solutions move towards the stationary solution, but on the other side 
solutions move away from it. 
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